Xiangyu Jie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7245476/publications.pdf

Version: 2024-02-01

	1306789		1199166	
13	642	7	12	
papers	citations	h-index	g-index	
13	13	13	518	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATIONS
1	Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nature Catalysis, 2020, 3, 902-912.	16.1	287
2	Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nature Communications, 2020, 11, 6395.	5.8	161
3	The decarbonisation of petroleum and other fossil hydrocarbon fuels for the facile production and safe storage of hydrogen. Energy and Environmental Science, 2019, 12, 238-249.	15.6	75
4	Rapid Production of Highâ€Purity Hydrogen Fuel through Microwaveâ€Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals. Angewandte Chemie - International Edition, 2017, 56, 10170-10173.	7.2	42
5	Yolkâ€"Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO ₂ Reforming of Methane. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31699-31709.	4.0	21
6	MnO _{<i>x</i>} -Promoted, Coking-Resistant Nickel-Based Catalysts for Microwave-Initiated CO ₂ Utilization. Industrial & Engineering Chemistry Research, 2020, 59, 6914-6923.	1.8	13
7	Hydrogen generation in crushed rocks saturated by crude oil and water using microwave heating. International Journal of Hydrogen Energy, 2022, 47, 20793-20802.	3.8	12
8	Size-Dependent Microwave Heating and Catalytic Activity of Fine Iron Particles in the Deep Dehydrogenation of Hexadecane. Chemistry of Materials, 2022, 34, 4682-4693.	3.2	8
9	One-Pot Synthesis of Ca Oxide-Promoted Cr Catalysts for the Dehydrogenation of Propane Using CO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 12645-12656.	1.8	7
10	Catalytic Activity of Various Carbons during the Microwave-Initiated Deep Dehydrogenation of Hexadecane. Jacs Au, 2021, 1, 2021-2032.	3.6	7
11	High-Purity, CO2-Free Hydrogen Generation from Crude Oils in Crushed Rocks Using Microwave Heating. , 2021, , .		4
12	Rapid Production of Highâ€Purity Hydrogen Fuel through Microwaveâ€Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals. Angewandte Chemie, 2017, 129, 10304-10307.	1.6	3
13	Lightâ€Assisted Ullmann Coupling of Phenols and Aryl Halides: The Synergetic Effect Between Plasmonic Copper Nanoparticles and Carbon Nanotubes from Various Sources. Chemistry - A European Journal, 2022, 28, .	1.7	2