
Yanbin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7245095/publications.pdf Version: 2024-02-01

YANRIN CUO

#	Article	IF	CITATIONS
1	Sunflower resistance against Sclerotinia sclerotiorum is potentiated by selenium through regulation of redox homeostasis and hormones signaling pathways. Environmental Science and Pollution Research, 2022, , 1.	5.3	6
2	Selenium enriched Hypsizygus marmoreus, a potential food supplement with improved Se bioavailability. LWT - Food Science and Technology, 2021, 140, 110819.	5.2	14
3	Highly stable selenium nanoparticles: Assembly and stabilization via flagellin FliC and porin OmpF in Rahnella aquatilis HX2. Journal of Hazardous Materials, 2021, 414, 125545.	12.4	18
4	Suppression of Rhizopus fruit rot by volatile organic compounds produced by <i>Paenibacillus polymyxa</i> CF05. Biocontrol Science and Technology, 2020, 30, 1351-1364.	1.3	9
5	Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza) Tj ETQq1 1 0.7	34314 rgB 9.1 rgB	T /Qyerlock 1
6	Selenium biofortification in Hericium erinaceus (Lion's Mane mushroom) and its in vitro bioaccessibility. Food Chemistry, 2020, 331, 127287.	8.2	33
7	Determination of Selenium in Common and Selenium-Rich Rice from Different Areas in China and Assessment of Their Dietary Intake. International Journal of Environmental Research and Public Health, 2020, 17, 4596.	2.6	7
8	The small RNA chaperone Hfq is a critical regulator for bacterial biosynthesis of selenium nanoparticles and motility in Rahnella aquatilis. Applied Microbiology and Biotechnology, 2020, 104, 1721-1735.	3.6	8
9	Selenium Biofortification and Antioxidant Activity in Cordyceps militaris Supplied with Selenate, Selenite, or Selenomethionine. Biological Trace Element Research, 2019, 187, 553-561.	3.5	44
10	ldentification of <i>atpD</i> as an optimal reference gene to explore antibiotic resistance and stress tolerance in <i>Rahnella aquatilis</i> . Journal of Applied Microbiology, 2019, 126, 1096-1107.	3.1	14
11	Selenium biofortification and its effect on multi-element change in Auricularia auricular. Food Chemistry, 2019, 295, 206-213.	8.2	28
12	Disruption of <i>acdS</i> gene reduces plant growth promotion activity and maize saline stress resistance by <i>Rahnella aquatilis</i> HX2. Journal of Basic Microbiology, 2019, 59, 402-411.	3.3	18
13	Biosynthesis of selenium nanoparticles and effects of selenite, selenate, and selenomethionine on cell growth and morphology in Rahnella aquatilis HX2. Applied Microbiology and Biotechnology, 2018, 102, 6191-6205.	3.6	23
14	Absorption and Bio-Transformation of Selenium Nanoparticles by Wheat Seedlings (Triticum aestivum) Tj ETQq() 0 0 rgBT	/Overlock 10
15	Determination of Selenium Species in <i>Cordyceps militaris</i> by High-performance Liquid Chromatography Coupled to Hydride Generation Atomic Fluorescence Spectrometry. Analytical Letters, 2018, 51, 2316-2330.	1.8	19
16	CsrB, a noncoding regulatory RNA, is required for BarA-dependent expression of biocontrol traits in Rahnella aquatilis HX2. PLoS ONE, 2017, 12, e0187492.	2.5	2
17	Change in the abundance and community composition of ammonia-oxidizing bacteria and archaea at soil aggregate level as native pasture converted to cropland in a semiarid alpine steppe of central Asia. Journal of Soils and Sediments, 2016, 16, 243-254.	3.0	6
18	Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem. PLoS ONE, 2015, 10, e0132879.	2.5	10

Yanbin Guo

#	Article	IF	CITATIONS
19	Induced systemic resistance and growth promotion in tomato by an indoleâ€3â€acetic acidâ€producing strain of <i>Paenibacillus polymyxa</i> . Annals of Applied Biology, 2014, 165, 270-279.	2.5	52
20	Disruption of Gene pqqA or pqqB Reduces Plant Growth Promotion Activity and Biocontrol of Crown Gall Disease by Rahnella aquatilis HX2. PLoS ONE, 2014, 9, e115010.	2.5	35
21	Investigation of photosynthate-C allocation 27Âdays after 13C-pulse labeling of Zea mays L. at different growth stages. Plant and Soil, 2013, 373, 755-764.	3.7	36
22	Characterisation of <i>Pseudomonas chlororaphis</i> subsp. <i>aurantiaca</i> strain Pa40 with the ability to control wheat sharp eyespot disease. Annals of Applied Biology, 2013, 163, 444-453.	2.5	8
23	Draft Genome Sequence of Rahnella aquatilis Strain HX2, a Plant Growth-Promoting Rhizobacterium Isolated from Vineyard Soil in Beijing, China. Journal of Bacteriology, 2012, 194, 6646-6647.	2.2	33
24	A Platingâ€PCR Technique for Detection and Quantification of the Biological Control Agent <i>Agrobacterium vitis</i> Strain E26 in Soil under Controlled Conditions. Journal of Phytopathology, 2012, 160, 496-499.	1.0	2