Zhanhu Guo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7244964/zhanhu-guo-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183 131 57,715 924 h-index g-index citations papers 68,036 6.6 960 8.33 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
924	Fabrication of a novel separation-free heterostructured photocatalyst with enhanced visible light activity in photocatalytic degradation of antibiotics. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 3146-31	583	2
923	AZ91 alloy nanocomposites reinforced with Mg-coated graphene: Phases distribution, interfacial microstructure, and property analysis. <i>Journal of Alloys and Compounds</i> , 2022 , 902, 163484	5.7	5
922	A Visible Light Driven Photoelectrochemical Chloramphenicol Aptasensor Based on a Gold Nanoparticle-Functionalized 3D Flower-like MoS/TiO Heterostructure <i>Langmuir</i> , 2022 ,	4	3
921	Improved methanogenesis in anaerobic wastewater treatment by magnetite@polyaniline (FeO@PANI) composites <i>Chemosphere</i> , 2022 , 296, 133953	8.4	3
920	The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. <i>Carbon</i> , 2022 , 191, 448-470	10.4	13
919	N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. <i>Advanced Composites and Hybrid Materials</i> , 2022 , 5, 356	8.7	21
918	Reinforcing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high-impact polystyrene through ionic crosslinking. <i>Surfaces and Interfaces</i> , 2022 , 28, 101607	4.1	2
917	Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. <i>Carbon</i> , 2022 , 188, 492-502	10.4	6
916	In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. <i>Particuology</i> , 2022 , 69, 111-122	2.8	10
915	Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. <i>Journal of Materials Science and Technology</i> , 2022 , 108, 64-72	9.1	35
914	Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification. <i>Separation and Purification Technology</i> , 2022 , 278, 119621	8.3	5
913	Highly efficient removal of trace lead (II) from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets. <i>Journal of Materials Science and Technology</i> , 2022 , 98, 212-218	9.1	22
912	Core-shell structured polyaniline/polypyrrole composites promoted methane production from anaerobic sludge. <i>Chemosphere</i> , 2022 , 287, 132296	8.4	3
911	Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth <i>Nano-Micro Letters</i> , 2022 , 14, 63	19.5	7
910	Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations. <i>Polymer</i> , 2022 , 247, 124783	3.9	O
909	Waterborne acrylic resin co-modified by itaconic acid and Emethacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. <i>Progress in Organic Coatings</i> , 2022 , 168, 106875	4.8	7
908	Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites <i>Nano-Micro Letters</i> , 2022 , 14, 118	19.5	13

(2021-2022)

907	Building blend from recycling acrylonitrile B utadiene B tyrene and high impact-resistance polystyrene through dextro-glucose. <i>Reactive and Functional Polymers</i> , 2022 , 175, 105287	4.6	О
906	Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. <i>Journal of Materials Science and Technology</i> , 2022 , 126, 152-160	9.1	10
905	Overview of MXene/conducting polymer composites for supercapacitors. <i>Journal of Energy Storage</i> , 2022 , 52, 105008	7.8	4
904	FeCo alloy nanoparticle decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. <i>Journal of Materials Chemistry C</i> , 2021 , 10, 126-134	7.1	4
903	Fluorescent Carbon Dots Crosslinked Cellulose Nanofibril/Chitosan Interpenetrating Hydrogel System for Sensitive Detection and Efficient Adsorption of Cu (II) and Cr (VI). <i>Chemical Engineering Journal</i> , 2021 , 133154	14.7	8
902	Dopamine-modified aramid fibers reinforced epoxidized natural rubber nanocomposites. <i>Composites Communications</i> , 2021 , 100996	6.7	1
901	Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 1413	8.7	29
900	Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 1226	8.7	93
899	Flexible Conductive Polyimide Fiber/MXene Composite Film for Electromagnetic Interference Shielding and Joule Heating with Excellent Harsh Environment Tolerance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 50368-50380	9.5	16
898	Effect of phosphating solution pH value on the formation of phosphate conversion coatings for corrosion behaviors on AZ91D. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 401-414	8.7	10
897	Polyaniline facilitated curing of phthalonitrile resin with enhanced processibility and mechanical property. <i>Polymer</i> , 2021 , 219, 123533	3.9	10
896	Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 286-293	8.7	14
895	Excellent selectivity and high capacity of As (V) removal by a novel lignin-based adsorbent doped with N element and modified with Ca. <i>International Journal of Biological Macromolecules</i> , 2021 , 172, 299	9-73/98	6
894	Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 265-273	8.7	23
893	Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. <i>Composites Part B: Engineering</i> , 2021 , 209, 108609	10	30
892	Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. <i>Nature Sustainability</i> , 2021 , 4, 708-714	22.1	23
891	Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 534-542	8.7	41
890	Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries. <i>Journal of Membrane Science</i> , 2021 , 624, 119118	9.6	10

889	Research on High-Efficiency Transmission Characteristics of Multi-Channel Breast Ultrasound Signals Based on Graphene Structure. <i>Crystals</i> , 2021 , 11, 507	2.3	1
888	Removing Pb2+ and As(V) from polluted water by highly reusable Fe-Mg metal-organic complex adsorbent. <i>Powder Technology</i> , 2021 , 383, 104-114	5.2	6
887	Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. <i>Carbon</i> , 2021 , 176, 88-105	10.4	114
886	Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 574-583	8.7	19
885	Flower-like Hydroxyfluoride-Sensing Platform toward NO Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 26278-26287	9.5	7
884	Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 780-792	8.7	29
883	Versatile Janus Composite Nonwoven Solar Absorbers with Salt Resistance for Efficient Wastewater Purification and Desalination. <i>ACS Applied Materials & Desalination and Desali</i>	5 8 ·5	9
882	Synergistic effect of carboxymethylcellulose and Cryptococcus laurentii on suppressing green mould of postharvest grapefruit and its mechanism. <i>International Journal of Biological Macromolecules</i> , 2021 , 181, 253-262	7.9	1
881	Improved methane production from anaerobic organic wastewater treatment by nitrogen-doped carbon. <i>Carbon</i> , 2021 , 177, 151-159	10.4	1
880	Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 459-468	8.7	35
879	Strong selectivity and high capacity in the adsorption of As (V) from wastewater by glycine-modified Fe/Cu-layered double hydroxides. <i>Journal of Alloys and Compounds</i> , 2021 , 865, 158956	5.7	12
878	Impacts of chain extenders on thermal property, degradation, and rheological performance of poly(butylene adipate-co-terephthalate). <i>Journal of Materials Research</i> , 2021 , 36, 3134-3144	2.5	2
877	Recent progress for silver nanowires conducting film for flexible electronics. <i>Journal of Nanostructure in Chemistry</i> , 2021 , 11, 1-19	7.6	22
876	Advances in Responsively Conductive Polymer Composites and Sensing Applications. <i>Polymer Reviews</i> , 2021 , 61, 157-193	14	47
875	Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. <i>Chemical Engineering Journal</i> , 2021 , 407, 125783	14.7	51
874	An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. <i>Journal of Materials Science and Technology</i> , 2021 , 69, 212-227	9.1	20
873	Electrospun iron/cobalt alloy nanoparticles on carbon nanofibers towards exhaustive electrocatalytic degradation of tetracycline in wastewater. <i>Chemical Engineering Journal</i> , 2021 , 405, 126	5 583	46
872	Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 314-322	9.3	13

(2021-2021)

871	Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 299-306	9.3	33	
870	Synthesis of 3D Ni3Se2 nano-architectures for electrochemical energy storage and conversion. Journal of Alloys and Compounds, 2021 , 855, 157479	5.7	3	
869	Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy. <i>Materials Science and Engineering C</i> , 2021 , 119, 111521	8.3	2	
868	Enhancing interfacial performance of epoxy resin composites via in-situ nucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole. <i>Composites Science and Technology</i> , 2021 , 201, 108522	8.6	58	
867	Recent Advances of Asymmetric Supercapacitors. Advanced Materials Interfaces, 2021, 8, 2001710	4.6	73	
866	The recent progress of synergistic supramolecular polymers: preparation, properties and applications. <i>Chemical Communications</i> , 2021 , 57, 1413-1429	5.8	18	
865	Narrow pH response multilayer films with controlled release of ibuprofen on magnesium alloy. <i>Materials Science and Engineering C</i> , 2021 , 118, 111414	8.3	1	
864	Porous TiO2HeTiO3@Carbon nanocomposites as anode for high-performance lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 858, 157635	5.7	5	
863	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 2004765	15.6	14	
862	Skin-inspired self-healing semiconductive touch panel based on novel transparent stretchable hydrogels. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14806-14817	13	5	
861	Adjustable magnetoresistance in semiconducting carbonized phthalonitrile resin. <i>Chemical Communications</i> , 2021 , 57, 9894-9897	5.8	1	
860	Ultra-sensitive flexible sandwich structural strain sensors based on a silver nanowire supported PDMS/PVDF electrospun membrane substrate. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2752-2762	7.1	13	
859	Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber photoanode for solar water splitting. <i>Dalton Transactions</i> , 2021 , 50, 293	6 ⁴ 2 ³ 944	1 ²	
858	Gold/titania Nanorod Assembled Urchin-like Photocatalysts with an Enhanced Hydrogen Generation by Photocatalytic Biomass Reforming. <i>Engineered Science</i> , 2021 ,	3.8	4	
857	A resilient and lightweight bacterial cellulose-derived C/rGO aerogel-based electromagnetic wave absorber integrated with multiple functions. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5566-5577	13	19	
856	Overview of cellulose-based flexible materials for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7278-7300	13	25	
855	An Overview of Oxygen Reduction Electrocatalysts for Rechargeable Zinc-Air Batteries Enabled by Carbon and Carbon Composites. <i>Engineered Science</i> , 2021 ,	3.8	8	
854	Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 51-64	8.7	47	

853	In-situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	6
852	Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel with Hydrogen Charging. <i>Jom</i> , 2021 , 73, 1165-1172	2.1	21
851	Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 173-185	8.7	198
850	Modification of coconut shell-based activated carbon and purification of wastewater. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 65-73	8.7	19
849	Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 86-95	8.7	43
848	Preparation and properties of ethylene-acrylate salt ionomer/polypropylene antistatic alloy. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 104-113	8.7	8
847	A multifunctional pentlandite counter electrode toward efficient and stable sensitized solar cells. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 392-400	8.7	7
846	Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 306-316	8.7	55
845	Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67) derived polyhedral porous Co3O4 for symmetric supercapacitors. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 670-683	8.7	21
844	Interface Engineered Microcellular Magnetic Conductive Polyurethane Nanocomposite Foams for Electromagnetic Interference Shielding. <i>Nano-Micro Letters</i> , 2021 , 13, 153	19.5	54
843	Recent Progress in Essential Functions of Soft Electronic Skin. <i>Advanced Functional Materials</i> , 2021 , 31, 2104686	15.6	43
842	Advances in transparent and stretchable strain sensors. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 435-450	8.7	27
841	MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 707-715	8.7	76
840	Hydrothermally synthesized Ti/Zr bimetallic MOFs derived N self-doped TiO2/ZrO2 composite catalysts with enhanced photocatalytic degradation of methylene blue. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 623, 126629	5.1	14
839	Soap-free styrene-acrylic/carbon nanotubes composite latex by in situ emulsion polymerization: Preparation, properties and characterizations. <i>Surfaces and Interfaces</i> , 2021 , 25, 101204	4.1	2
838	Ultra-Stretchable Self-Healing Composite Hydrogels as Touch Panel. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100742	4.6	2
837	Designing Na2Zn2TeO6-Embedded 3D-Nanofibrous Poly(vinylidenefluoride)-co-hexafluoropropylene-Based Nanohybrid Electrolyte via Electrospinning for Durable Sodium-Ion Capacitors. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8475-8487	6.1	6
836	Flotation separation of acrylonitrile-butadienestyrene (ABS) and high impact polystyrene (HIPS) from waste electrical and electronic equipment (WEEE) by potassium permanganate surface modification. Separation and Purification Technology 2021, 269, 118767	8.3	6

835	In situ-grown Co3O4 nanorods on carbon cloth for efficient electrocatalytic oxidation of urea. Journal of Nanostructure in Chemistry, 2021 , 11, 735	7.6	3
834	Agaric-like anodes of porous carbon decorated with MoO nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. <i>Journal of Colloid and Interface Science</i> , 2021 , 596, 396-4	10973	70
833	Revisiting Nafion membranes by introducing ammoniated polymer with norbornene to improve fuel cell performance. <i>Journal of Power Sources</i> , 2021 , 506, 230164	8.9	2
832	Synthesis, characterization and properties of poly(butanediol sebacate B utanediol terephthalate) (PBSeT) copolyesters using glycerol as cross-linking agent. <i>Materials Today Communications</i> , 2021 , 28, 102557	2.5	3
831	Design, photoelectric properties and electron transition mechanism of Cr doped p-CuGaS2 compound based on intermediate band effect. <i>Materials Today Physics</i> , 2021 , 21, 100545	8	3
830	Fungus bran-derived nanoporous carbon with layered structure and rime-like support for enhanced symmetric supercapacitors. <i>Journal of Nanostructure in Chemistry</i> , 2021 , 11, 769	7.6	6
829	Flexible Ag Microparticle/MXene-Based Film for Energy Harvesting. <i>Nano-Micro Letters</i> , 2021 , 13, 201	19.5	18
828	Highly thermally conductive 3D BN/MWCNTs/C spatial network composites with improved electrically insulating and flame retardancy prepared by biological template assisted method. <i>Composites Part B: Engineering</i> , 2021 , 222, 109039	10	6
827	Significant improvement on selectivity and capacity of glycine-modified FeCo-layered double hydroxides in the removal of As (V) from polluted water. <i>Chemosphere</i> , 2021 , 281, 130943	8.4	2
826	Novel computational design of high refractive index nanocomposites and effective refractive index tuning based on nanoparticle morphology effect. <i>Composites Part B: Engineering</i> , 2021 , 223, 109128	10	Ο
825	Metal organic framework-derived C-doped ZnO/TiO nanocomposite catalysts for enhanced photodegradation of Rhodamine B. <i>Journal of Colloid and Interface Science</i> , 2021 , 599, 566-576	9.3	31
824	Toughening epoxy resin by constructing Interaction between a tung oil-based modifier and epoxy. <i>Industrial Crops and Products</i> , 2021 , 170, 113723	5.9	3
823	Preparation of Mg,N-co-doped lignin adsorbents for enhanced selectivity and high adsorption capacity of As (V) from wastewater. <i>Particuology</i> , 2021 , 58, 206-213	2.8	18
822	Microwave hydrothermal fabrication of CuFeCr ternary layered double hydroxides with excellent Cr(VI) adsorption. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 628, 127279	5.1	2
821	Interfacial polymerized copolymers of aniline and phenylenediamine with tunable magnetoresistance and negative permittivity. <i>Materials Today Physics</i> , 2021 , 21, 100502	8	17
820	Recent advancements in self-healing materials: Mechanicals, performances and features. <i>Reactive and Functional Polymers</i> , 2021 , 168, 105041	4.6	8
819	Advances in Waterborne Acrylic Resins: Synthesis Principle, Modification Strategies, and Their Applications. <i>ACS Omega</i> , 2021 , 6, 2443-2449	3.9	16
818	Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 27-35	8.7	14

817	Enhanced Absorption in the Wide Wavelength Range: Black Silicon Decorated with Few-Layer PtS2. Journal of Physical Chemistry C, 2021 , 125, 27335-27343	3.8	1
816	Synthesis of high performance diesel oxidation catalyst using novel mesoporous AlLaZrTiOx mixed oxides by a modified sol-gel method. <i>Advanced Composites and Hybrid Materials</i> , 2020 , 3, 583-593	8.7	27
815	Thermally Conductive Anticorrosive Epoxy Nanocomposites with Tannic Acid-Modified Boron Nitride Nanosheets. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 20371-20381	3.9	19
814	Polyvinyl alcohol/carbon fibers composites with tunable negative permittivity behavior. <i>Surfaces and Interfaces</i> , 2020 , 21, 100735	4.1	22
813	Assessment of the electrochemical behaviour of silicon@carbon nanocomposite anode for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 832, 154644	5.7	23
812	Electrospun carbon/iron nanofibers: The catalytic effects of iron and application in Cr(VI) removal. <i>Carbon</i> , 2020 , 166, 227-244	10.4	9
811	Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes. <i>Polymer</i> , 2020 , 200, 12254	7 ^{3.9}	23
810	Improved Corrosion Resistance and Increased Hardness of Copper Substrates from Cu-Ni/Ni-P Composite Coatings. <i>MRS Advances</i> , 2020 , 5, 2129-2137	0.7	2
809	Bimetallic metal-organic frameworks anchored corncob-derived porous carbon photocatalysts for synergistic degradation of organic pollutants. <i>Chemosphere</i> , 2020 , 259, 127389	8.4	28
808	Photocatalytic degradation of organic dye and phytohormone by a Cu(II) complex powder catalyst with added H2O2. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 603, 125147	5.1	11
807	Binder-free CuS/ZnS/sodium alginate/rGO nanocomposite hydrogel electrodes for enhanced performance supercapacitors. <i>International Journal of Biological Macromolecules</i> , 2020 , 162, 310-319	7.9	14
806	Synthesis of dynamic imine macrocyclic supramolecular polymers via synchronized self-assembly based on dynamic covalent bonds and noncovalent interactions. <i>Chemical Communications</i> , 2020 , 56, 9288-9291	5.8	5
805	Influence of rhenium and tungsten on the microstructure and performance of GH4169 alloy through heat treatment. <i>Emerging Materials Research</i> , 2020 , 9, 705-715	1.4	1
804	Controllable antibacterial and bacterially anti-adhesive surface fabricated by a bio-inspired beetle-like macromolecule. <i>International Journal of Biological Macromolecules</i> , 2020 , 157, 553-560	7.9	33
803	Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. <i>International Journal of Biological Macromolecules</i> , 2020 , 161, 147-154	7.9	19
802	Fungus Bran-Derived Porous N-Doped CarbonZinc Manganese Oxide Nanocomposite Positive Electrodes toward High-Performance Asymmetric Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 15713-15722	3.8	9
801	Impacts of SiC on the microstructure and wear performances of (SiCAl3Ti)/7075 composites. <i>Emerging Materials Research</i> , 2020 , 9, 716-724	1.4	1
800	Effect of Eminopropyltriethoxysilane on the properties of cellulose acetate butyrate modified acrylic waterborne coatings. <i>Reactive and Functional Polymers</i> , 2020 , 154, 104657	4.6	13

(2020-2020)

799	carbonaceously strengthening, toughening, and conductivity improving for epoxy at ultralow carbonaceous filler content by constructing 3D nanostructures and sacrificial bonds. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 137, 106014	8.4	6
798	A Novel Route to Synthesize N,N-Dimethyl Arylmethylamines from Aryl Aldehydes, Hexamethylenetetramine and Hydrogen Chinese Journal of Chemistry, 2020 , 38, 842-846	4.9	1
797	Trace bismuth and iodine co-doping enhanced thermoelectric performance of PbTe alloys. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 245501	3	21
796	A self-supported 3D aerogel network lithium Bulfur battery cathode: sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7980-7990	13	48
795	Zwitterionic glycine modified Fe/Mg-layered double hydroxides for highly selective and efficient removal of oxyanions from polluted water. <i>Journal of Materials Science and Technology</i> , 2020 , 51, 8-15	9.1	40
794	Carbon Nitride-Based Single-Atom Cu Catalysts for Highly Efficient Carboxylation of Alkynes with Atmospheric CO2. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 7327-7335	3.9	27
793	Overview of Polyvinyl Alcohol Nanocomposite Hydrogels for Electro-Skin, Actuator, Supercapacitor and Fuel Cell. <i>Chemical Record</i> , 2020 , 20, 773-792	6.6	24
79 ²	Significantly Strengthening Epoxy by Incorporating Carbon Nanotubes/Graphitic Carbon Nitride Hybrid Nanofillers. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 2000231	3.9	8
791	Overview of Ionogels in Flexible Electronics. <i>Chemical Record</i> , 2020 , 20, 948-967	6.6	26
790	Theoretical investigation of molybdenum/tungsten-vanadium solid solution alloy membranes: Thermodynamic stability and hydrogen permeation. <i>Journal of Membrane Science</i> , 2020 , 608, 118200	9.6	16
789	Sodium-ion capacitors: Materials, Mechanism, and Challenges. <i>ChemSusChem</i> , 2020 , 13, 2522-2539	8.3	58
788	Enteromorpha prolifera polysaccharide based coagulant aid for humic acids removal and ultrafiltration membrane fouling control. <i>International Journal of Biological Macromolecules</i> , 2020 , 152, 576-583	7.9	23
787	Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5191-5201	7.1	23
786	Microwave hydrothermal synthesized ZnIn-layered double hydroxides derived ZnIn-layered double oxides for enhanced methylene blue photodegradation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 592, 124588	5.1	39
7 ⁸ 5	Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. <i>Nanotechnology</i> , 2020 , 31, 225402	3.4	35
7 ⁸ 4	Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. <i>Nano Energy</i> , 2020 , 71, 104629	17.1	51
783	Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. <i>ACS Applied Materials & Discrete Amplied Materials & Discrete Ampli</i>	9.5	44
782	Effects of pretreated carbon supports in Pd/C catalysts on rosin disproportionation catalytic performance. <i>Chemical Engineering Science</i> , 2020 , 216, 115588	4.4	7

781	A novel nano-fibriform C- modified niobium pentoxide by using cellulose templates with highly visible-light photocatalytic performance. <i>Ceramics International</i> , 2020 , 46, 13210-13218	5.1	22
78o	Advances in Template Prepared Nano-Oxides and their Applications: Polluted Water Treatment, Energy, Sensing and Biomedical Drug Delivery. <i>Chemical Record</i> , 2020 , 20, 710-729	6.6	25
779	Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 3463-3475	7.1	55
778	Effects of chlorinated polyethylene and antimony trioxide on recycled polyvinyl chloride/acryl-butadiene-styrene blends: Flame retardancy and mechanical properties. <i>Polymer</i> , 2020 , 190, 122198	3.9	26
777	Laccase immobilized polyaniline/magnetic graphene composite electrode for detecting hydroquinone. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 1130-1138	7.9	78
776	Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 5114-5122	3.6	81
775	One-step co-precipitation synthesis of novel BiOCl/CeO2 composites with enhanced photodegradation of rhodamine B. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 1345-1361	6.8	26
774	Fast room-temperature self-healing siloxane elastomer for healable stretchable electronics. Journal of Colloid and Interface Science, 2020 , 573, 105-114	9.3	22
773	Anti-liquid-Interfering and Bacterially Antiadhesive Strategy for Highly Stretchable and Ultrasensitive Strain Sensors Based on Cassie-Baxter Wetting State. <i>Advanced Functional Materials</i> , 2020 , 30, 2000398	15.6	109
772	Bioactive Compounds: Antioxidant, Antibacterial and Antiproliferative Activities in Chloranthus henryi. <i>Science of Advanced Materials</i> , 2020 , 12, 144-151	2.3	10
771	Enhanced Catalytic Conversion of Camelina Oil to Hydrocarbon Fuels Over Ni-MCM-41 Catalysts. <i>Science of Advanced Materials</i> , 2020 , 12, 304-311	2.3	23
770	Experimental And Theoretical Characteristic Of Single Atom Co-N-C Catalyst For Li-O2 Batteries. <i>Engineered Science</i> , 2020 ,	3.8	9
769	Recent Advances in Co3O4 as Anode Materials for High-Performance Lithium-Ion Batteries. <i>Engineered Science</i> , 2020 ,	3.8	21
768	Recent Progress on Thermo-electrical Properties of Conductive Polymer Composites and Their Application in Temperature Sensors. <i>Engineered Science</i> , 2020 ,	3.8	31
767	Polyethylene Glycol/Carbon Black Shape-Stable Phase Change Composites for Peak Load Regulating of Electric Power System and Corresponding Thermal Energy Storage. <i>Engineered Science</i> , 2020 ,	3.8	15
766	Significantly Enhanced Ultrathin NiCo-based MOF Nanosheet Electrodes Hybrided with Ti3C2Tx MXene for High Performance Asymmetric Supercapacitors. <i>Engineered Science</i> , 2020 ,	3.8	24
765	Photodegradation of Gaseous Toluene by Vacuum Ultraviolet Light: Performance and Mechanism. Engineered Science, 2020 ,	3.8	12
764	Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. <i>ES Food & Agroforestry</i> , 2020 ,	3	24

(2020-2020)

763	Synthesis and Characterization of Antiflammable Vinyl Ester Resin Nanocomposites with Surface functionalized Nanotitania. <i>ES Materials & Manufacturing</i> , 2020 ,	3.7	12	
762	A Facile Synthesis of Ag/TiO2/rGO Nanocomposites with Enhanced Visible Light Photocatalytic Activity. ES Materials & Manufacturing, 2020,	3.7	21	
761	Polydimethylsiloxane Resin Nanocomposite Coating with Alternating Multilayer Structure for Corrosion Protection Performance. <i>ES Materials & Manufacturing</i> , 2020 ,	3.7	14	
760	2-(3,4-Epoxy) ethyltriethoxysilane-modified waterborne acrylic resin: Preparation and property analysis. <i>Polymer</i> , 2020 , 190, 122196	3.9	31	
759	Microwave-hydrothermal synthesis of beta-bismuth (III) oxide nanopowders and their enhanced photocatalytic properties. <i>Powder Technology</i> , 2020 , 370, 226-236	5.2	12	
758	An inverse opal CuNbO anode for high-performance Li storage. <i>Chemical Communications</i> , 2020 , 56, 732	! ţ. 832	414	
757	Research on acoustic conduction mechanism of underwater acoustic channel based on metamaterials. <i>AIP Advances</i> , 2020 , 10, 115321	1.5	1	
756	Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers. <i>Nanotechnology</i> , 2020 , 31, 025704	3.4	37	
755	Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 849-856	9.3	84	
754	Environmentally friendly alternative to polyester polyol by corn straw on preparation of rigid polyurethane composite. <i>Composites Communications</i> , 2020 , 17, 109-114	6.7	12	
753	Photoinduced Multiple Effects to Enhance Uranium Extraction from Natural Seawater by Black Phosphorus Nanosheets. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1220-1227	16.4	56	
75 ²	Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction. <i>Chemosphere</i> , 2020 , 242, 125235	8.4	31	
751	Antifouling and antibacterial behaviors of capsaicin-based pH responsive smart coatings in marine environments. <i>Materials Science and Engineering C</i> , 2020 , 108, 110361	8.3	49	
750	Photoinduced Multiple Effects to Enhance Uranium Extraction from Natural Seawater by Black Phosphorus Nanosheets. <i>Angewandte Chemie</i> , 2020 , 132, 1236-1243	3.6	10	
749	Multifunctions of Polymer Nanocomposites: Environmental Remediation, Electromagnetic Interference Shielding, And Sensing Applications. <i>ChemNanoMat</i> , 2020 , 6, 174-184	3.5	89	
748	Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 1-10	7.9	21	
747	A highly Li-conductive HfNbO anode material for superior Li storage. <i>Chemical Communications</i> , 2020 , 56, 619-622	5.8	45	
746	Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2238-2247	.7.1	45	

745	Polyaniline crystalline nanostructures dependent negative permittivity metamaterials. <i>Polymer</i> , 2020 , 188, 122129	3.9	44
744	N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue. <i>Journal of Colloid and Interface Science</i> , 2020 , 565, 142-155	9.3	77
743	Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. Journal of Materials Chemistry C, 2020 , 8, 3029-3039	7.1	146
742	Direct Observation of Stable Negative Capacitance in SrTiO3@BaTiO3 Heterostructure. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901005	6.4	14
741	Effect of MoO3/carbon nanotubes on friction and wear performance of glass fabric-reinforced epoxy composites under dry sliding. <i>Applied Surface Science</i> , 2020 , 506, 144946	6.7	75
740	Self-Supported Iridium Oxide Nanostructures for Electrocatalytic Water Oxidation in Acidic Media. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 2-8	3.8	14
739	Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. <i>Journal of Alloys and Compounds</i> , 2020 , 820, 153111	5.7	89
738	A novel combination of graphene and silver nanowires for entirely stretchable and ultrasensitive strain sensors: sandwich-based sensing films. <i>Nanotechnology</i> , 2020 , 31, 135501	3.4	9
737	High-absorption solar steam device comprising Au@Bi2MoO6-CDs: Extraordinary desalination and electricity generation. <i>Nano Energy</i> , 2020 , 68, 104298	17.1	81
736	Graphenellarbon Black/CaCu3Ti4O12 Ternary Metacomposites toward a Tunable and Weakly Negative Property at the Radio-Frequency Region. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 23361-23	336 ⁸ 7	15
735	Layer-by-layer constructing interface with rigid-flexible transition structure for improving interfacial adhesion of PBO fiber composites. <i>Composites Communications</i> , 2020 , 22, 100466	6.7	6
734	Formability and hardness studies of selective laser melting of GH4169 Ni-based alloy powders. <i>Emerging Materials Research</i> , 2020 , 9, 758-769	1.4	0
733	Carbon microfibers with tailored surface functionalities supporting iron/nickel bisalloy for highly efficient hexavalent chromium recovery. <i>Carbon</i> , 2020 , 168, 640-649	10.4	18
732	Emerging flexible sensors based on nanomaterials: recent status and applications. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25499-25527	13	40
731	Research progress for plastic waste management and manufacture of value-added products. <i>Advanced Composites and Hybrid Materials</i> , 2020 , 3, 443-461	8.7	35
730	Broadband radar absorbing characteristic based on periodic hollow truncated cone structure. <i>Physica B: Condensed Matter</i> , 2020 , 595, 412368	2.8	7
729	Simple water tunable polyurethane microsphere for super-hydrophobic dip-coating and oil-water separation. <i>Polymer</i> , 2020 , 204, 122833	3.9	17
728	Multi-interfaced graphene aerogel/polydimethylsiloxane metacomposites with tunable electrical conductivity for enhanced electromagnetic interference shielding. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11748-11759	7.1	32

(2020-2020)

727	Microwave Hydrothermally Synthesized Metal-Organic Framework-5 Derived C-doped ZnO with Enhanced Photocatalytic Degradation of Rhodamine B. <i>Langmuir</i> , 2020 , 36, 9658-9667	4	19
726	Research progress in rare earths and their composites based electrode materials for supercapacitors. <i>Green Energy and Environment</i> , 2020 , 5, 259-273	5.7	38
7 2 5	Anticorrosive Epoxy Nanocomposite Coatings Filled with Polyaniline-Functionalized Silicon Nitride Particles. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16649-16659	3.9	7
724	Chemical characteristic and bioactivity of hemicellulose-based polysaccharides isolated from Salvia miltiorrhiza. <i>International Journal of Biological Macromolecules</i> , 2020 , 165, 2475-2483	7.9	5
723	The Properties and Preparation Methods of Different Boron Nitride Nanostructures and Applications of Related Nanocomposites. <i>Chemical Record</i> , 2020 , 20, 1314-1337	6.6	13
722	An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications. <i>Carbon</i> , 2020 , 170, 302-326	10.4	77
721	One-pot microwave-hydrothermally synthesized carbon nanotube-cerium oxide nanocomposites for enhanced visible photodegradation of acid orange 7. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23743-23753	3.6	5
720	Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21131-21141	13	80
719	Chain Extension, Phase Interface Reparation and Mechanical Property of Recycled Acrylonitrile-Butadiene-Styrene by Epoxidized Styrene-Butadiene-Styrene. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 2000284	3.9	3
718	One-pot In Situ Microwave Hydrothermally Grown Zeolitic Imidazolate Framework-8 on ZnIn-Layered Double Oxides toward Enhanced Methylene Blue Photodegradation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16637-16648	3.9	5
717	Preparation of High-Density Fuel Through Dimerization of 即inene. <i>Chemical Engineering and Technology</i> , 2020 , 43, 2259-2265	2	5
716	Electrical Transport in Polyaniline B arium Ferrite Nanocomposites with Negative Giant Magnetoresistance. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 22646-22655	3.8	7
715	Constructing CeO/nitrogen-doped carbon quantum dot/g-CN heterojunction photocatalysts for highly efficient visible light photocatalysis. <i>Nanoscale</i> , 2020 , 12, 19112-19120	7.7	21
714	Photocatalytic Reduction of CO to CO over Quinacridone/BiVO Nanocomposites. <i>ChemSusChem</i> , 2020 , 13, 5565-5570	8.3	8
713	Substrate effects on the CVD growth of MoS2 and WS2. <i>Journal of Materials Science</i> , 2020 , 55, 990-996	4.3	23
712	Residue metals and intrinsic moisture in excess sludge improve pore formation during its carbonization process. <i>Carbon</i> , 2020 , 156, 320-328	10.4	25
711	Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants. <i>Journal of Colloid and Interface Science</i> , 2020 , 559, 124-133	9.3	52
710	Simple fabrication of superhydrophobic PLA with honeycomb-like structures for high-efficiency oil-water separation. <i>Chinese Chemical Letters</i> , 2020 , 31, 365-368	8.1	50

709	Research Progress in the Field of Adsorption and Catalytic Degradation of Sewage by Hydrotalcite-Derived Materials. <i>Chemical Record</i> , 2020 , 20, 355-369	6.6	23
708	Direct Z-Scheme Heterojunction of SnS /Sulfur-Bridged Covalent Triazine Frameworks for Visible-Light-Driven CO Photoreduction. <i>ChemSusChem</i> , 2020 , 13, 6278-6283	8.3	13
707	Hydrosoluble Graphene/Polyvinyl Alcohol Membranous Composites with Negative Permittivity Behavior. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 1900709	3.9	51
706	Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 23635-23642	3.8	132
705	Bio-templated 3D porous graphitic carbon nitride hybrid aerogel with enhanced charge carrier separation for efficient removal of hazardous organic pollutants. <i>Journal of Colloid and Interface Science</i> , 2019 , 556, 366-375	9.3	29
704	Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li-O2 batteries. <i>Journal of Catalysis</i> , 2019 , 377, 534-542	7.3	76
703	3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A. <i>Journal of Materials Research</i> , 2019 , 34, 2964-2975	2.5	72
702	MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. <i>Electrochimica Acta</i> , 2019 , 323, 134826	6.7	109
701	An overview of stretchable strain sensors from conductive polymer nanocomposites. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 11710-11730	7.1	199
700	Boosted selectivity and enhanced capacity of As(V) removal from polluted water by triethylenetetramine activated lignin-based adsorbents. <i>International Journal of Biological Macromolecules</i> , 2019 , 140, 1167-1174	7.9	56
699	High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system. <i>Journal of Materials Research</i> , 2019 , 34, 3030-3039	2.5	62
698	Thermomechanical investigation on the effect of nitroguanidine on the thermal expansion coefficient and glass transition temperature of double-base gun propellant. <i>Journal of Materials Research and Technology</i> , 2019 , 8, 4264-4272	5.5	10
697	Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells. <i>Nanoscale</i> , 2019 , 11, 17579-17589	7.7	72
696	Enhanced electromagnetic wave absorbing nickel (Oxide)-Carbon nanocomposites. <i>Ceramics International</i> , 2019 , 45, 24474-24486	5.1	46
695	Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: Synthesis and electrochemical performance. <i>Polymer</i> , 2019 , 182, 121	808	104
694	Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. <i>Nano Energy</i> , 2019 , 66, 104143	17.1	154
693	Tung Oil-Based Modifier Toughening Epoxy Resin by Sacrificial Bonds. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17344-17353	8.3	30
692	Sodium alginate templated hydroxyapatite/calcium silicate composite adsorbents for efficient dye removal from polluted water. <i>International Journal of Biological Macromolecules</i> , 2019 , 141, 1035-1043	7.9	35

691	Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1659-1669	7.1	148
690	Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO/ZrO composites toward enhanced photocatalytic degradation of Rhodamine B. <i>Journal of Colloid and Interface Science</i> , 2019 , 541, 18-29	9.3	196
689	Smart strain sensing organicIhorganic hybrid hydrogels with nano barium ferrite as the cross-linker. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2353-2360	7.1	116
688	Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. <i>Journal of Colloid and Interface Science</i> , 2019 , 542, 159-167	9.3	79
687	Amorphous Ni Co P-supported TiO nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 62-70	3	8
686	Nanosheet-based NbO hierarchical microspheres for enhanced lithium storage. <i>Chemical Communications</i> , 2019 , 55, 2493-2496	5.8	78
685	Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3160-3167	7.1	68
684	ZIF-8 derived ZnO/Zn6Al2O9/Al2O3 nanocomposite with excellent photocatalytic performance under simulated sunlight irradiation. <i>New Journal of Chemistry</i> , 2019 , 43, 2990-2999	3.6	16
683	Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. <i>ACS Applied Materials & Design Control of the Co</i>	4 ^{9.5}	162
682	Interfacially reinforced carbon fiber silicone resin via constructing functional nano-structural silver. <i>Composites Science and Technology</i> , 2019 , 181, 107689	8.6	49
681	Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16902	:- 18 911	1 ¹⁰⁶
680	Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. <i>Green Chemistry Letters and Reviews</i> , 2019 , 12, 235-243	4.7	66
679	Corn stoverderived biochar for efficient adsorption of oxytetracycline from wastewater. <i>Journal of Materials Research</i> , 2019 , 34, 3050-3060	2.5	47
678	Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel-like Spidroin-based Protein Fiber. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11785-11790	16.4	111
677	Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 25465-25473	9.5	193
676	Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation. <i>Chemical Communications</i> , 2019 , 55, 9011-9014	5.8	93
675	Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. <i>Nanoscale</i> , 2019 , 11, 18968-18994	7.7	95
674	Suppressing Charge Recombination and Ultraviolet Light Degradation of Perovskite Solar Cells Using Silicon Oxide Passivation. <i>ChemElectroChem</i> , 2019 , 6, 3167-3174	4.3	68

673	Efficient and Selective Methane Borylation Through Pore Size Tuning of Hybrid Porous Organic-Polymer-Based Iridium Catalysts. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10671-1	0 5 7 6	20
672	Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold via self-assembly. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15731-15	740	21
671	Processing conditions dependent tunable negative permittivity in reduced graphene oxide-alumina nanocomposites. <i>Ceramics International</i> , 2019 , 45, 17784-17792	5.1	36
670	Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis. <i>Polymer</i> , 2019 , 176, 118-126	3.9	45
669	Photocatalytic Reduction of Carbon Dioxide over Quinacridone Nanoparticles Supported on Reduced Graphene Oxide. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 9636-9643	3.9	12
668	A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. <i>Electrochimica Acta</i> , 2019 , 312, 157-167	6.7	58
667	Synergistically Toughening Polyoxymethylene by Methyl Methacrylate B utadiene B tyrene Copolymer and Thermoplastic Polyurethane. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1800567	7 ^{2.6}	61
666	Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. <i>Electrochimica Acta</i> , 2019 , 315, 114-123	6.7	199
665	Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide. <i>International Journal of Biological Macromolecules</i> , 2019 , 133, 964-970	7.9	66
664	Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7035-7044	7.1	107
663	One-pot synthesized molybdenum dioxideholybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13460-13472	13	185
662	Surface intercalated spherical MoSSe nanocatalysts for highly efficient and durable hydrogen evolution reactions. <i>Dalton Transactions</i> , 2019 , 48, 8279-8287	4.3	78
661	Flexible Sandwich Structural Strain Sensor Based on Silver Nanowires Decorated with Self-Healing Substrate. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900074	3.9	138
660	Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. <i>Carbon</i> , 2019 , 147, 550-558	10.4	165
659	In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption. <i>Ceramics International</i> , 2019 , 45, 11756-11764	5.1	83
658	Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. Journal of Colloid and Interface Science, 2019 , 547, 40-49	9.3	135
657	Enhanced Solid Particle Erosion Properties of Thermoplastic Polyurethane-Carbon Nanotube Nanocomposites. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900010	3.9	41
656	Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis. <i>Polymer</i> , 2019 , 169, 255-262	3.9	55

655	Remarkably Strengthened microinjection molded linear low-density polyethylene (LLDPE) via multi-walled carbon nanotubes derived nanohybrid shish-kebab structure. <i>Composites Part B: Engineering</i> , 2019 , 167, 362-369	10	42
654	Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. <i>Dalton Transactions</i> , 2019 , 48, 5193-5202	4.3	199
653	Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. <i>Composites Part B: Engineering</i> , 2019 , 167, 396-405	10	180
652	Facile Preparation of 1T/2H-Mo(S1-xSex)2 Nanoparticles for Boosting Hydrogen Evolution Reaction. <i>ChemCatChem</i> , 2019 , 11, 2217-2222	5.2	105
651	Poly (vinyl butyral)/Graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. <i>Polymer</i> , 2019 , 172, 415-422	3.9	173
650	Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 6583-6592	2.1	18
649	Multi-walled carbon nanotube in a miscible PEO/PMMA blend: Thermal and rheological behavior. <i>Polymer Testing</i> , 2019 , 75, 367-372	4.5	23
648	Visible-light-driven photoreduction of CO2 to CO over porous nitrogen-deficient carbon nitride nanotubes. <i>Catalysis Science and Technology</i> , 2019 , 9, 2485-2492	5.5	22
647	AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. <i>Journal of Alloys and Compounds</i> , 2019 , 792, 203-214	5.7	114
646	Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 10922-10932	9.5	242
645	Achieving carbon-rich silicon-containing ceramic anode for advanced lithium ion battery. <i>Ceramics International</i> , 2019 , 45, 10572-10580	5.1	43
644	Intracellular Polymer Substances Induced Conductive Polyaniline for Improved Methane Production from Anaerobic Wastewater Treatment. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5912-5920	8.3	89
643	Cobalt-catalyzed synthesis of N-containing heterocycles via cyclization of ortho-substituted anilines with CO2/H2. <i>Green Chemistry</i> , 2019 , 21, 1695-1701	10	13
642	Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. <i>Polymer Reviews</i> , 2019 , 59, 280-337	14	316
641	Preparation of MCA-SiO2 and Its Flame Retardant Effects on Glass Fiber Reinforced Polypropylene. <i>Fibers and Polymers</i> , 2019 , 20, 120-128	2	16
640	Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. <i>Biosensors and Bioelectronics</i> , 2019 , 123, 167-177	11.8	201
639	Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2019 , 533, 13-23	9.3	174
638	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. <i>Materials Letters</i> , 2019 , 255, 126531	3.3	22

637	Interfacial Engineering for High-Efficiency Nanorod Array-Structured Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 33770-33780	9.5	41
636	Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19668-19675	13	112
635	Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. <i>Composites Part B: Engineering</i> , 2019 , 176, 107338	10	56
634	A Dual-Surface Amidoximated Halloysite Nanotube for High-Efficiency Economical Uranium Extraction from Seawater. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14979-14985	16.4	84
633	Weakly negative permittivity and low frequency dispersive behavior in graphene/epoxy metacomposites. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 14745-14754	2.1	33
632	Amorphous MnSiO3 confined in graphene sheets for superior lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 804, 243-251	5.7	13
631	Controllable organic magnetoresistance in polyaniline coated poly(p-phenylene-2,6-benzobisoxazole) short fibers. <i>Chemical Communications</i> , 2019 , 55, 10068-10071	5.8	79
630	Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction. <i>Carbon</i> , 2019 , 153, 575-584	10.4	42
629	Ultrafast Recovery of Uranium from Seawater by Strain UUS-1 with Innate Anti-Biofouling Activity. <i>Advanced Science</i> , 2019 , 6, 1900961	13.6	39
628	Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel-like Spidroin-based Protein Fiber. <i>Angewandte Chemie</i> , 2019 , 131, 11911-11916	3.6	18
627	Friction and Wear of MoO3/Graphene Oxide Modified Glass Fiber Reinforced Epoxy Nanocomposites. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900166	3.9	79
626	Effects of Transition Metal Substituents on Interfacial and Electronic Structure of CHNHPbI/TiO Interface: A First-Principles Comparative Study. <i>Nanomaterials</i> , 2019 , 9,	5.4	6
625	Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. <i>Composites Part B: Engineering</i> , 2019 , 176, 107078	10	160
624	Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 42594-4	1 2 606	134
623	N,S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. <i>Materials Science and Engineering C</i> , 2019 , 105, 110132	8.3	81
622	Facile bioactive yeast cell templated synthesis of laser stealth antimony doped tin oxide hollow microspheres. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 583, 123965	5.1	18
621	Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	30
620	Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. <i>Advanced Composites and Hybrid Materials</i> , 2019 , 2, 711-719	8.7	26

619	A Dual-Surface Amidoximated Halloysite Nanotube for High-Efficiency Economical Uranium Extraction from Seawater. <i>Angewandte Chemie</i> , 2019 , 131, 15121-15127	3.6	21	
618	Alternating Multilayer Structural Epoxy Composite Coating for Corrosion Protection of Steel. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900374	3.9	61	
617	Template-free microwave-assisted synthesis of FeTi coordination complex yolk-shell microspheres for superior catalytic removal of arsenic and chemical degradation of methylene blue from polluted water. <i>Powder Technology</i> , 2019 , 356, 726-734	5.2	70	
616	Optimization of Epoxypinane Synthesis by Silicotungstic Acid Supported on SBA-15 Catalyst Using Response Surface Methodology. <i>Science of Advanced Materials</i> , 2019 , 11, 699-707	2.3	35	
615	Vinyl Ester Resin Nanocomposites Reinforced with Carbon Nanotubes Modified Basalt Fibers. <i>Science of Advanced Materials</i> , 2019 , 11, 1340-1347	2.3	14	
614	Preparation and Characterization of Mesoporous CuO/ZSM-5 Catalysts for Automotive Exhaust Purification. <i>Science of Advanced Materials</i> , 2019 , 11, 1198-1205	2.3	45	
613	The Effect of Deformation Parameters on Advanced High Strength Steel Treated by Quenching-Partitioning-Tempering Process. <i>Science of Advanced Materials</i> , 2019 , 11, 1044-1051	2.3	4	
612	Remarkably Enhanced CO2 Uptake and Uranium Extraction by Functionalization of Cyano-bearing Conjugated Porous Polycarbazoles. <i>Engineered Science</i> , 2019 ,	3.8	4	
611	In situ preparation of WO3/g-C3N4 composite and its enhanced photocatalytic ability, a comparative study on the preparation methods of chemical composite and mechanical mixing. <i>Engineered Science</i> , 2019 ,	3.8	6	
610	Highly Efficient Fluoride Adsorption in Domestic Water with RGO/Ag Nanomaterials. <i>ES Energy & Environments</i> , 2019 ,	2.9	8	
609	Microwave-Assisted Carbochlorination Recovery of Indium Process of Dynamic Simulation Based on Multi-Field Coupling. <i>ES Energy & Environments</i> , 2019 ,	2.9	3	
608	http://www.espublisher.com/journals/articledetails/115/. ES Materials & Manufacturing, 2019,	3.7	7	
607	Amino Carbon Nanotube Modified Reduced Graphene Oxide Aerogel for Oil/Water Separation. <i>ES Materials & Manufacturing</i> , 2019 ,	3.7	8	
606	Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. <i>Materials Letters</i> , 2019 , 244, 27-30	3.3	41	
605	Experimental study on thermal expansion coefficient of composite multi-layered flaky gun propellants. <i>Composites Part B: Engineering</i> , 2019 , 166, 428-435	10	57	
604	Amino graphene oxide/dopamine modified aramid fibers: Preparation, epoxy nanocomposites and property analysis. <i>Polymer</i> , 2019 , 168, 131-137	3.9	125	
603	Sandwich structured WO3 nanoplatelets for highly efficient photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019 , 7, 26077-26088	13	46	
602	Local acoustic field enhancement of single cell photoacoustic signal detection based on metamaterial structure. <i>AIP Advances</i> , 2019 , 9, 095064	1.5	5	

601	A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26039-26052	13	104
600	Alternating Multilayer Structural Epoxy Composite Coating for Corrosion Protection of Steel. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1970035	3.9	14
599	A rose bengal-functionalized porous organic polymer for carboxylative cyclization of propargyl alcohols with CO. <i>Chemical Communications</i> , 2019 , 55, 12475-12478	5.8	22
598	A polyether amine modified metal organic framework enhanced the CO adsorption capacity of room temperature porous liquids. <i>Chemical Communications</i> , 2019 , 55, 13179-13182	5.8	50
597	pH responsive antifouling and antibacterial multilayer films with Self-healing performance. <i>Chemical Engineering Journal</i> , 2019 , 356, 130-141	14.7	45
596	Constructing efficient mixed-ion perovskite solar cells based on TiO nanorod array. <i>Journal of Colloid and Interface Science</i> , 2019 , 534, 459-468	9.3	72
595	Preparation and hydrogen storage of Pd/MIL-101 nanocomposites. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 186-192	5.7	37
594	2D bio-nanostructures fabricated by supramolecular self-assembly of protein, peptide, or peptoid. <i>Advanced Composites and Hybrid Materials</i> , 2019 , 2, 201-213	8.7	8
593	Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). <i>International Journal of Biological Macromolecules</i> , 2019 , 126, 376-384	7.9	76
592	Synthesis and Characterization of ZnNiIn Layered Double Hydroxides Derived Mixed Metal Oxides with Highly Efficient Photoelectrocatalytic Activities. <i>Industrial & Discourse Chemistry Research</i> , 2019 , 58, 836-848	3.9	84
591	Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe ions and tetracyclines. <i>Journal of Colloid and Interface Science</i> , 2019 , 539, 332-341	9.3	259
590	Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater. <i>Korean Journal of Chemical Engineering</i> , 2019 , 36, 226-235	2.8	13
589	Polyborosilazane derived ceramics - Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. <i>Electrochimica Acta</i> , 2019 , 296, 925-937	6.7	170
588	Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. <i>Electrochimica Acta</i> , 2019 , 296, 907-915	6.7	282
587	Progress on the Photocatalytic Reduction Removal of Chromium Contamination. <i>Chemical Record</i> , 2019 , 19, 873-882	6.6	132
586	Eosin Y-Functionalized Conjugated Organic Polymers for Visible-Light-Driven CO Reduction with H O to CO with High Efficiency. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 632-636	16.4	96
585	Iridium-Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting. <i>ChemSusChem</i> , 2019 , 12, 1576-1590	8.3	82
584	Microwave Hydrothermal Synthesis of In2O3-ZnO Nanocomposites and Their Enhanced Photoelectrochemical Properties. <i>Journal of the Electrochemical Society</i> , 2019 , 166, H3074-H3083	3.9	62

(2018-2019)

583	Efficient intrinsic self-healing epoxy acrylate formed from host-guest chemistry. <i>Polymer</i> , 2019 , 164, 79-85	3.9	40
582	Ink-based 3D printing technologies for graphene-based materials: a review. <i>Advanced Composites and Hybrid Materials</i> , 2019 , 2, 1-33	8.7	97
581	Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. <i>Carbon</i> , 2019 , 145, 433-444	10.4	281
580	Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy. <i>Carbon</i> , 2019 , 142, 131-140	10.4	133
579	Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers. <i>Chemical Engineering Journal</i> , 2019 , 358, 924-935	14.7	42
578	Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. <i>Journal of Colloid and Interface Science</i> , 2019 , 536, 245-251	9.3	143
577	Enhanced Photocatalytic Activity of B, N-Codoped TiOlby a New Molten Nitrate Process. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 839-849	1.3	50
576	Hydroxyapatite (HA) Modified Nanocoating Enhancement on AZ31 Mg Alloy by Combined Surface Mechanical Attrition Treatment and Electrochemical Deposition Approach. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 810-818	1.3	9
575	Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. <i>Carbon</i> , 2019 , 141, 506-514	10.4	304
574	Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. <i>Applied Surface Science</i> , 2019 , 465, 154-163	6.7	125
573	Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 861-870	5.7	78
572	Interfacially reinforced carbon fiber/epoxy composite laminates via in-situ synthesized graphitic carbon nitride (g-C3N4). <i>Composites Part B: Engineering</i> , 2019 , 158, 259-268	10	83
57 ¹	Urchin-like NiO-NiCoO heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li-O batteries. <i>Nanoscale</i> , 2018 , 11, 50-59	7.7	97
570	Role of Interfaces at Nano-Architectured Photocatalysts for Hydrogen Production from Water Splitting 2018 , 403-438		
569	Application of Nanostructured Electrodes in Halide Perovskite Solar Cells and Electrochromic Devices 2018 , 67-90		
568	Light triggered interfacial damage self-healing of poly(p-phenylene benzobisoxazole) fiber composites. <i>Nanotechnology</i> , 2018 , 29, 185602	3.4	106
567	Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation. <i>Separation and Purification Technology</i> , 2018 , 201, 193-204	8.3	143
566	Self-reinforcing and toughening isotactic polypropylene via melt sequential injection molding. <i>Polymer Testing</i> , 2018 , 67, 183-189	4.5	59

Nanostructured Catalyst for Small Molecule Conversion **2018**, 439-466

564	Nanocomposite Photocatalysts for Solar Fuel Production from CO2 and Water 2018 , 271-308		
563	Layered Double Hydroxide-Derived NO x Storage and Reduction Catalysts for Vehicle NO x Emission Control 2018 , 527-541		
562	Ionic liquid-assisted synthesis of Yb3+-Tm3+ codoped Y7O6F9 petal shaped microcrystals with enhanced upconversion emission. <i>Materials Research Bulletin</i> , 2018 , 103, 19-24	5.1	8
561	Ultrasonic Pretreated Sludge Derived Stable Magnetic Active Carbon for Cr(VI) Removal from Wastewater. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7283-7291	8.3	166
560	Highly efficient charge collection in dye-sensitized solar cells based on nanocomposite photoanode filled with indium-tin oxide interlayer. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 356-363	8.7	11
559	Structures and mechanical properties of Nb-Mo-Co(Ru) solid solutions for hydrogen permeation. <i>Journal of Alloys and Compounds</i> , 2018 , 756, 26-32	5.7	27
558	In situ polymerized poly(acrylic acid)/alumina nanocomposites for Pb2+ adsorption. <i>Advances in Polymer Technology</i> , 2018 , 37, 2981-2996	1.9	53
557	Genome-Wide Association Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice. <i>Molecular Plant</i> , 2018 , 11, 789-805	14.4	72
556	Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5239-5249	7.1	120
555	Crosslinked norbornene copolymer anion exchange membrane for fuel cells. <i>Journal of Membrane Science</i> , 2018 , 556, 118-125	9.6	145
554	Waterborne acrylic resin modified with glycidyl methacrylate (GMA): Formula optimization and property analysis. <i>Polymer</i> , 2018 , 143, 155-163	3.9	71
553	Improved extraction of cobalt and lithium by reductive acid from spent lithium-ion batteries via mechanical activation process. <i>Journal of Materials Science</i> , 2018 , 53, 13790-13800	4.3	43
552	Nanocomposite Structures Related to Electrospun Nanofibers for Highly Efficient and Cost-Effective Dye-Sensitized Solar Cells 2018 , 113-133		1
551	An overview of metamaterials and their achievements in wireless power transfer. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2925-2943	7.1	135
550	Synergistic Hematite f ullerene Electron-Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells. <i>ChemElectroChem</i> , 2018 , 5, 725-725	4.3	5
549	Hydroxide ions transportation in polynorbornene anion exchange membrane. <i>Polymer</i> , 2018 , 138, 363-	368)	99
548	Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. <i>Journal of Colloid and Interface Science</i> , 2018 , 517, 40-51	9.3	222

(2018-2018)

547	Micromechanical analysis of molecular orientation in high-temperature creep of polycarbonate. <i>Materials and Design</i> , 2018 , 144, 25-31	8.1	34
546	Polydimethylsiloxane-titania nanocomposite coating: Fabrication and corrosion resistance. <i>Polymer</i> , 2018 , 138, 203-210	3.9	250
545	Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3004-3015	7.1	300
544	Electromagnetic Interference Shielding Polymer Nanocomposites 2018 , 567-601		1
543	Introduction to Nanocomposites 2018 , 1-5		1
542	Photocatalytic Nanomaterials for the Energy and Environmental Application 2018, 353-401		3
541	Advanced Nanocomposite Electrodes for Lithium-Ion Batteries 2018 , 7-32		1
540	Perovskite Solar Cell 2018 , 91-111		3
539	Electrochromic Materials and Devices: Fundamentals and Nanostructuring Approaches 2018 , 231-270		О
538	The Applications of Nanocomposite Catalysts in Biofuel Production 2018 , 309-350		2
537	Colloidal Synthesis of Advanced Functional Nanostructured Composites and Alloys via Laser Ablation-Based Techniques 2018 , 135-172		
536	Applications of Nanomaterials in Nuclear Waste Management 2018 , 543-566		3
535	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-22	276.1	558
534	Thermoelectric Nanocomposite for Energy Harvesting 2018 , 173-202		1
533	Sequential protocol for C(sp) carboxylation with CO2: KOtBu-catalyzed C(sp) silylation and KOtBu-mediated carboxylation. <i>Science China Chemistry</i> , 2018 , 61, 449-456	7.9	10
532	Graphene Composite Catalysts for Electrochemical Energy Conversion 2018 , 203-230		1
531	All-Carbon-Electrode-Based Endurable Flexible Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1706777	15.6	203
530	Controllable Cross-Linking Anion Exchange Membranes with Excellent Mechanical and Thermal Properties. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1700462	3.9	76

529	Rational Heterostructure Design for Photoelectrochemical Water Splitting 2018, 467-526		O
528	Mussel-Inspired Nanocomposites: Synthesis and Promising Applications in Environmental Fields 2018 , 603-650		1
527	Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers. <i>ACS Applied Materials & Dolymers and State State</i>	9.5	257
526	Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 763-772	8.3	48
525	Synergistic Hematite-Fullerene Electron-Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells. <i>ChemElectroChem</i> , 2018 , 5, 726-731	4.3	66
524	One-Step Synthesis of Nb O /C/Nb C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. <i>ChemSusChem</i> , 2018 , 11, 688-699	8.3	223
523	Electrochemical Lithium Doping Induced Property Changes In Halide Perovskite CsPbBr3 Crystal. <i>ACS Energy Letters</i> , 2018 , 3, 264-269	20.1	44
522	2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. <i>Nanoscale</i> , 2018 , 10, 2191-2198	7.7	63
521	Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. <i>Electrochimica Acta</i> , 2018 , 261, 236-245	6.7	90
520	Carbon nanotube aerogel-CoS hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. <i>Nanoscale</i> , 2018 , 10, 4194-4201	7.7	60
519	Fabrication of Graphene Network in Alumina Ceramics with Adjustable Negative Permittivity by Spark Plasma Sintering. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1791-1799	3.8	25
518	Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. <i>Polymer</i> , 2018 , 143, 324-330	3.9	128
517	Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride. <i>Journal of Polymer Research</i> , 2018 , 25, 1	2.7	125
516	Carbon Nanocomposites in Electrochemical Capacitor Applications 2018 , 33-65		
515	Perovskite Solar Cells: All-Carbon-Electrode-Based Endurable Flexible Perovskite Solar Cells (Adv. Funct. Mater. 11/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870069	15.6	2
514	Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. <i>Polymers for Advanced Technologies</i> , 2018 , 29, 668-676	3.2	174
513	Water-based rust converter and its polymer composites for surface anticorrosion. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 537, 334-342	5.1	45
512	Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 127-134	8.7	59

511	All-Printed Solid-State Microsupercapacitors Derived from Self-Template Synthesis of Ag@PPy Nanocomposites. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700206	6.8	46
510	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. <i>Progress in Materials Science</i> , 2018 , 92, 258-283	42.2	184
509	Carbon nanotubes, graphene, and their derivatives for heavy metal removal. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 56-78	8.7	125
508	Yeast-template synthesized Fe-doped cerium oxide hollow microspheres for visible photodegradation of acid orange 7. <i>Journal of Colloid and Interface Science</i> , 2018 , 511, 39-47	9.3	81
507	PAA/alumina composites prepared with different molecular weight polymers and utilized as support for nickel-based catalyst. <i>Advances in Polymer Technology</i> , 2018 , 37, 2325-2335	1.9	32
506	Microstructural evolution and mechanical strengthening mechanism of Mg-3Sn-1Mn-1La alloy after heat treatments. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 734, 200-209	5.3	72
505	Enhanced Electromagnetic Wave Absorption of Three-Dimensional Porous Fe3O4/C Composite Flowers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 12471-12480	8.3	217
504	Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions. <i>Frontiers in Plant Science</i> , 2018 , 9, 492	6.2	25
503	Polystyrene Foam with High Cell Density and Small Cell Size by Compression-Injection Molding and Core Back Foaming Technique: Evolution of Cells in Cavity. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1800110	3.9	20
502	Multistimuli-Responsive Intrinsic Self-Healing Epoxy Resin Constructed by Host © uest Interactions. <i>Macromolecules</i> , 2018 , 51, 5294-5303	5.5	140
501	PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoS/TiO nanotube arrays. <i>Nanoscale</i> , 2018 , 10, 10288-10295	7.7	31
500	Preparation of polystyrene-b-poly(ethylene/propylene)-b-polystyrene grafted glycidyl methacrylate and its compatibility with recycled polypropylene/recycled high impact polystyrene blends. <i>Polymer</i> , 2018 , 145, 232-241	3.9	54
499	Triple layered corelinell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(VI) reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11119-11128	13	146
498	Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. <i>Carbon</i> , 2018 , 139, 1126-1135	10.4	245
497	Rhodium-Catalyzed Formylation of Aryl Halides with CO and H. Organic Letters, 2018, 20, 5130-5134	6.2	22
496	Bacteria cell templated porous polyaniline facilitated detoxification and recovery of hexavalent chromium. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16824-16832	13	79
495	First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A = Al and Si). Computational Materials Science, 2018 , 154, 365-376	∂ ^{.2}	80
494	Novel process of coating Al on graphene involving organic aluminum accompanying microstructure evolution. <i>Materials Letters</i> , 2018 , 232, 202-205	3.3	31

493	Facile Route to Improve the Crystalline Memory Effect: Electrospun Composite Fiber and Annealing. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1800236	2.6	7
492	Controllable Synthesis of Monolayer Poly(acrylic acid) on the Channel Surface of Mesoporous Alumina for Pb(II) Adsorption. <i>Langmuir</i> , 2018 , 34, 7859-7868	4	71
491	Overview of the Experimental Trends in Water-Assisted Injection Molding. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1800035	3.9	20
490	Total Synthesis of Septedine and 7-Deoxyseptedine. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9025-9029	16.4	33
489	Superhydrophobic Shish-kebab Membrane with Self-Cleaning and Oil/Water Separation Properties. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9866-9875	8.3	130
488	Frictional Reduction with Partially Exfoliated Multi-Walled Carbon Nanotubes as Water-Based Lubricant Additives. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 3427-3432	1.3	8
487	Molecular orientation dependent dynamic viscoelasticity in uni-axially drawn polycarbonate. <i>Polymer Testing</i> , 2018 , 69, 528-535	4.5	13
486	Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite films for switchable thermochromic applications. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8360-8371	7.1	65
485	Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8812-8822	7.1	240
484	Highly Efficient Fe-N-C Nanoparticles Modified Porous Graphene Composites for Oxygen Reduction Reaction. <i>Journal of the Electrochemical Society</i> , 2018 , 165, H510-H516	3.9	83
483	3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. <i>Polymer</i> , 2018 , 149, 13-22	3.9	136
482	Potassium Hydroxide Activated and Nitrogen Doped Graphene with Enhanced Supercapacitive Behavior. <i>Science of Advanced Materials</i> , 2018 , 10, 937-949	2.3	88
481	Antifouling of Titania Nanostructures in Real Maritime Conditions. <i>Science of Advanced Materials</i> , 2018 , 10, 1216-1223	2.3	15
480	Determining Interfacial Shear Bond Strength in Thin Laminated Metal Composites. <i>Science of Advanced Materials</i> , 2018 , 10, 1543-1551	2.3	2
479	Precipitation Sequence of Middle Al Concentration Alloy Using the Inversion Algorithm and Microscopic Phase Field Model. <i>Science of Advanced Materials</i> , 2018 , 10, 1793-1804	2.3	61
478	Nano-mesoporous TiO2 Vacancies Modification for Halide Perovskite Solar Cells. <i>Engineered Science</i> , 2018 ,	3.8	18
477	Introducing Engineered Science. Engineered Science, 2018,	3.8	6
476	An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. <i>Engineered Science</i> , 2018 ,	3.8	67

(2018-2018)

475	Polyelectrolyte Assisted Preparation of Nanocatalysts for CO2 Methanation. <i>Engineered Science</i> , 2018 ,	3.8	7	
474	Slippery Liquid-infused Porous Surface Fabricated on Aluminum Maintains Stable Corrosion Resistance at Elevated Temperatures. <i>Engineered Science</i> , 2018 ,	3.8	8	
473	Enhancing Dielectric Performance of Poly(vinylidene fluoride) Nanocomposites via Controlled Distribution of Carbon Nanotubes and Barium Titanate Nanoparticles. <i>Engineered Science</i> , 2018 ,	3.8	26	
472	Influence of Anti-reflecting Nature of MgF2 Embedded Electrospun TiO2 Nanofibers Based Photoanode to Improve the Photoconversion Efficiency of DSSC. <i>ES Energy & Environments</i> , 2018 ,	2.9	6	
471	New Functions of Polyaniline. ES Materials & Manufacturing, 2018,	3.7	9	
470	Enhanced Electrochemical Performance of Cu2+ doped TiO2 Nanoparticles for Lithium-ion Battery. <i>ES Materials & Manufacturing</i> , 2018 ,	3.7	6	
469	Sustainable Cross-linked Porous Corn Starch Adsorbents with High Methyl Violet Adsorption. <i>ES Materials & Manufacturing</i> , 2018 ,	3.7	5	
468	Chitosan-coated-magnetite with Covalently Grafted Polystyrene Based Carbon Nanocomposites for Hexavalent Chromium Adsorption. <i>Engineered Science</i> , 2018 ,	3.8	23	
467	Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2258-2269	7.1	301	
466	Microwave Solvothermal Fabrication of Zirconia Hollow Microspheres with Different Morphologies Using Pollen Templates and Their Dye Adsorption Removal. <i>Industrial & Different Morphologies Research</i> , 2018 , 57, 231-241	3.9	66	
465	Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 300-309	8.7	43	
464	Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. <i>Composites Science and Technology</i> , 2018 , 154, 28-36	8.6	232	
463	Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. <i>Electrochimica Acta</i> , 2018 , 260, 65-72	6.7	232	
462	Synthesis and photoelectrocatalytic activity of InO hollow microspheres via a bio-template route using yeast templates. <i>Dalton Transactions</i> , 2018 , 47, 708-715	4.3	58	
461	Non-covalently functionalized graphene strengthened poly(vinyl alcohol). <i>Materials and Design</i> , 2018 , 139, 372-379	8.1	207	
460	Polyoxymethylene/ethylene butylacrylate copolymer/ethylene-methyl acrylate-glycidyl methacrylate ternary blends. <i>Polymer Engineering and Science</i> , 2018 , 58, 1127-1134	2.3	57	
459	Eosin Y-Functionalized Conjugated Organic Polymers for Visible-Light-Driven CO2 Reduction with H2O to CO with High Efficiency. <i>Angewandte Chemie</i> , 2018 , 131, 642	3.6	1	
458	An overview of lead-free piezoelectric materials and devices. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12446-12467	7.1	162	

457	In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. <i>Nanoscale</i> , 2018 , 10, 20414-20425	7.7	268
456	Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C, 2018 , 6, 12121-12141	7.1	359
455	2018,		9
454	Towards activation of amorphous MoS via Cobalt doping for enhanced electrocatalytic hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 23109-23117	6.7	22
453	Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24676-24685	13	220
452	Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances. <i>Polymer</i> , 2018 , 156, 128-135	3.9	125
451	pH-responsive Capsaicin@chitosan nanocapsules for antibiofouling in marine applications. <i>Polymer</i> , 2018 , 158, 223-230	3.9	64
450	Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid particle erosion resistance. <i>Polymer</i> , 2018 , 158, 381-390	3.9	129
449	Naked eye colorimetric multifunctional sensing of nitrobenzene, Cr(VI) and Fe(III) with a new green emission Ag6S6 multi-metal-cluster. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 785-796	8.7	19
448	Synergetic coupling of Pd nanoparticles and amorphous MoSx toward highly efficient electrocatalytic hydrogen evolution reactions. <i>Applied Materials Today</i> , 2018 , 13, 158-165	6.6	28
447	Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. <i>Carbon</i> , 2018 , 140, 696-733	10.4	403
446	Superhydrophobic/Superoleophilic Polycarbonate/Carbon Nanotubes Porous Monolith for Selective Oil Adsorption from Water. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 13747-13755	8.3	158
445	Porous Polyethylene Bundles with Enhanced Hydrophobicity and Pumping Oil-Recovery Ability via Skin-Peeling. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 12580-12585	8.3	93
444	Graphitic carbon nitride (g-C3N4) interfacially strengthened carbon fiber epoxy composites. <i>Composites Science and Technology</i> , 2018 , 167, 515-521	8.6	87
443	Advanced composites of complex Ti-based oxides as anode materials for lithium-ion batteries. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 440-459	8.7	45
442	Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation. <i>Journal of Materials Research</i> , 2018 , 33, 1411-1421	2.5	7
441	Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. <i>Journal of Colloid and Interface Science</i> , 2018 , 529, 111-121	9.3	85
440	Effects of polystyrene-b-poly(ethylene/propylene)-b-polystyrene compatibilizer on the recycled polypropylene and recycled high-impact polystyrene blends. <i>Polymers for Advanced Technologies</i> , 2018 , 29, 2344-2351	3.2	26

439	Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13062-13074	13	130
438	Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent. <i>Composites Science and Technology</i> , 2018 , 164, 195-203	8.6	149
437	Sodium dodecyl benzene sulfonate-catalyzed reaction for aromatic aldehydes with 1-phenyl-3-methyl-5-pyrazolone in aqueous media. <i>Green Chemistry Letters and Reviews</i> , 2018 , 11, 217-2	2 2 13 ⁷	18
436	Hexa-[4-(glycidyloxycarbonyl) phenoxy]cyclotriphosphazene chain extender for preparing high-performance flame retardant polyamide 6 composites. <i>Polymer</i> , 2018 , 146, 63-72	3.9	50
435	Synchronously improved dielectric and mechanical properties of wave-transparent laminated composites combined with outstanding thermal stability by incorporating iysozyme/POSS functionalized PBO fibers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7652-7660	7.1	82
434	Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. <i>Dalton Transactions</i> , 2018 , 47, 9765-9778	4.3	94
433	Carbon Nanomaterials in Direct Liquid Fuel Cells. Chemical Record, 2018, 18, 1365-1372	6.6	100
432	Self-regulation in chemical and bio-engineering materials for intelligent systems. <i>CAAI Transactions on Intelligence Technology</i> , 2018 , 3, 40-48	9.7	7
431	Preparation of 4,4?-diaminostilbene-2,2?-disulfonic acid intercalated LDH/polypropylene nanocomposites with enhanced UV absorption property. <i>Polymer Composites</i> , 2017 , 38, 1937-1947	3	13
430	Building Nanoporous Metal-Organic Frameworks "Armor" on Fibers for High-Performance Composite Materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 5590-5599	9.5	116
429	Toughened polyoxymethylene by polyolefin elastomer and glycidyl methacrylate grafted high-density polyethylene. <i>Polymer Engineering and Science</i> , 2017 , 57, 1119-1126	2.3	14
428	Mechanical enhancement of melt-stretched thucleated isotactic polypropylene: The role of lamellar branching of trystal. <i>Polymer Testing</i> , 2017 , 58, 227-235	4.5	62
427	Strain sensing behaviors of epoxy nanocomposites with carbon nanotubes under cyclic deformation. <i>Polymer</i> , 2017 , 112, 1-9	3.9	75
426	Ni nanobelts induced enhancement of hole transport and collection for high efficiency and ambient stable mesoscopic perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4292-4299	13	12
425	Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2318-2328	7.1	202
424	Superior Cu2S/brass-mesh electrode in CdS quantum dot sensitized solar cells for dual-side illumination. <i>Materials Letters</i> , 2017 , 195, 100-103	3.3	8
423	Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(Laprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2807-2817	7.1	129
422	Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. <i>Carbon</i> , 2017 , 115, 503-514	10.4	46

421	Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. <i>Polymer</i> , 2017 , 114, 113-121	3.9	53
420	Cetyl trimethyl ammonium bromide (CTAB) micellar templates directed synthesis of water-dispersible polyaniline rhombic plates with excellent processability and flow-induced color variation. <i>Polymer</i> , 2017 , 117, 30-36	3.9	22
419	Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5334-5344	7.1	209
418	Ni-doped #Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. <i>Nano Energy</i> , 2017 , 38, 193-2	2007.1	50
417	Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6929-6936	7.1	82
416	In-situ interfacial formation of TiO2/polypyrrole selective layer for improving the separation efficiency towards molecular separation. <i>Journal of Membrane Science</i> , 2017 , 536, 19-27	9.6	66
415	Formation of poly(acrylic acid)/alumina composite via in situ polymerization of acrylic acid adsorbed within oxide pores. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 514, 168-177	5.1	9
414	Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1434-1441	13	77
413	Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1873-1894	13	88
412	Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. <i>Nanoscale</i> , 2017 , 9, 11017-11026	7.7	151
411	Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. <i>CrystEngComm</i> , 2017 , 19, 3288-3298	3.3	179
410	Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation. <i>Applied Materials Today</i> , 2017 , 9, 77-81	6.6	61
409	Cost-effective fabrication of graphene-like nanosheets from natural microcrystalline graphite minerals by liquid oxidation method. <i>RSC Advances</i> , 2017 , 7, 32008-32019	3.7	11
408	In situ grown cobalt selenide/graphene nanocomposite counter electrodes for enhanced dye-sensitized solar cell performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14583-14594	13	68
407	Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14041-14052	13	102
406	A low loading of grafted thermoplastic polystyrene strengthens and toughens transparent epoxy composites. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4275-4285	7.1	51
405	Theoretical analysis and numerical simulation of electromagnetic parameters of Fe-C coaxial single fiber. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 432, 154-163	2.8	2
404	Tunable Negative Permittivity with Fano-like Resonance and Magnetic Property in Percolative Silver/Yittrium Iron Garnet Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7564-7571	3.8	59

403	Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. <i>Nanoscale</i> , 2017 , 9, 5779-5787	7.7	131
402	Highly efficient saturated visible up-conversion photoluminescent Y2O3:Er3+ microspheres pumped with a 1.55 fb laser diode. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3903-3907	7.1	16
401	Effective dismantling of waste printed circuit board assembly with methanesulfonic acid containing hydrogen peroxide. <i>Environmental Progress and Sustainable Energy</i> , 2017 , 36, 873-878	2.5	24
400	Coupling thermoelectricity and electrocatalysis for hydrogen production via PbTe PbS/TiO2 heterojunction. <i>Journal of Power Sources</i> , 2017 , 342, 452-459	8.9	17
399	Flexible, conductive, porous, fibrillar polymergold nanocomposites with enhanced electromagnetic interference shielding and mechanical properties. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1095-1105	7.1	83
398	Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers. <i>Polymer</i> , 2017 , 110, 1-11	3.9	53
397	Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy. <i>Journal of Membrane Science</i> , 2017 , 526, 32-42	9.6	136
396	Polyaniline Assisted Uniform Dispersion for Magnetic Ultrafine Barium Ferrite Nanorods Reinforced Epoxy Metacomposites with Tailorable Negative Permittivity. <i>Journal of Physical</i> <i>Chemistry C</i> , 2017 , 121, 13265-13273	3.8	36
395	Extracellular Polymeric Substances Induced Porous Polyaniline for Enhanced Cr(VI) Removal from Wastewater. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11788-11796	8.3	41
394	Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium ion batteries. Journal of Materials Chemistry A, 2017 , 5, 24083-24090	13	22
393	Enhanced thermal stabilities and char yields of carbon fibers reinforced boron containing novolac phenolic resins composites. <i>Journal of Polymer Research</i> , 2017 , 24, 1	2.7	12
392	Rectifying and ultraviolet photovoltage characteristics of La0.9Na0.1MnO3/SrTiO3-Nb heterostructures. <i>Applied Physics Letters</i> , 2017 , 111, 132101	3.4	3
391	Two-step hydrothermally synthesized carbon nanodots/WO photocatalysts with enhanced photocatalytic performance. <i>Dalton Transactions</i> , 2017 , 46, 15769-15777	4.3	207
390	Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic CoreBhell SiO2@MWCNTs and Montmorillonite Bifillers. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 17003	5 7 .6	150
389	Self-assembled nano-leaf/vein bionic structure of TiO/MoS composites for photoelectric sensors. <i>Nanoscale</i> , 2017 , 9, 18194-18201	7.7	13
388	Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 10689-10701	3.9	244
387	Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. <i>Carbon</i> , 2017 , 125, 103-112	10.4	167
386	Crystal Structure Modification Enhanced FeNb11O29 Anodes for Lithium-Ion Batteries. ChemElectroChem, 2017, 4, 3171-3180	4.3	130

385	Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. <i>Polymer</i> , 2017 , 128, 12-23	3.9	264
384	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with All-Inorganic Charge Contacts. <i>Advanced Functional Materials</i> , 2017 , 27, 1703068	15.6	108
383	Reparation of recycled acrylonitrile- butadiene-styrene by pyromellitic dianhydride: Reparation performance evaluation and property analysis. <i>Polymer</i> , 2017 , 124, 41-47	3.9	107
382	Large Scaled Synthesis of Heterostructured Electrospun TiO2/SnO2Nanofibers with an Enhanced Photocatalytic Activity. <i>Journal of the Electrochemical Society</i> , 2017 , 164, H651-H656	3.9	243
381	Esterification synthesis of ethyl oleate catalyzed by Brfisted acidfurfactant-combined ionic liquid. <i>Green Chemistry Letters and Reviews</i> , 2017 , 10, 202-209	4.7	86
3 80	Heating-induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8233-8242	7.1	51
379	Discrete Iron(III) Oxide Nanoislands for Efficient and Photostable Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2017 , 27, 1702090	15.6	71
378	Positive Temperature Coefficient (PTC) Evolution of Segregated Structural Conductive Polypropylene Nanocomposites with Visually Traceable Carbon Black Conductive Network. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700265	4.6	23
377	A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17848-17855	13	202
376	Spatial Confining Forced Network Assembly for preparation of high-performance conductive polymeric composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 102, 88-95	8.4	48
375	Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. <i>Polymer</i> , 2017 , 125, 50-57	3.9	335
374	Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9359-9369	7.1	276
373	Heterostructured TiO2/WO3Nanocomposites for Photocatalytic Degradation of Toluene under Visible Light. <i>Journal of the Electrochemical Society</i> , 2017 , 164, H1086-H1090	3.9	175
372	Overview of polymer nanocomposites: Computer simulation understanding of physical properties. <i>Polymer</i> , 2017 , 133, 272-287	3.9	137
371	Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. <i>Polymer</i> , 2017 , 131, 263-271	3.9	254
370	Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1026-1032	8.3	96
369	Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 73-83	7.1	477
368	Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets. <i>Composites Part B: Engineering</i> , 2017 , 109, 101-107	10	66

(2016-2017)

367	Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 201, 470-478	21.8	145
366	Reinforcement of Cu nanoink sintered film with extended carbon nanofibers for large deformation of printed electronics. <i>Journal of Composite Materials</i> , 2017 , 51, 997-1003	2.7	5
365	Alkyl bicarbamates supramolecular organogelators with effective selective gelation and high oil recovery from oil/water mixtures. <i>Chemosphere</i> , 2017 , 167, 178-187	8.4	15
364	Synthesis of 3,4,5-trihydroxy-2-[(hydroxyimino) methyl] benzoic acid as a novel rust converter. <i>Green Chemistry Letters and Reviews</i> , 2017 , 10, 455-461	4.7	14
363	Toughening Poly(lactic acid) by Melt Blending with Poly(ether-block-amide) Copolymer. <i>Science of Advanced Materials</i> , 2017 , 9, 1683-1692	2.3	7
362	Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment. <i>Polymer</i> , 2017 , 120, 236-243	3.9	62
361	One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. <i>Carbon</i> , 2016 , 109, 640-649	10.4	104
3 60	Thermal, mechanical and magnetic properties of functionalized magnetite/vinyl ester nanocomposites. <i>RSC Advances</i> , 2016 , 6, 91584-91593	3.7	16
359	Fixed carbon content and reaction mechanism of natural microcrystalline graphite purified by hydrochloric acid and sodium fluoride. <i>International Journal of Mineral Processing</i> , 2016 , 155, 45-54		17
358	Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water. <i>Surface and Coatings Technology</i> , 2016 , 307, 366-373	4.4	48
357	Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27026-27050	3.6	116
356	Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering. <i>Scientific Reports</i> , 2016 , 6, 33127	4.9	8
355	Total Synthesis of Rubriflordilactone B. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6964-8	16.4	81
354	Enhanced Negative Magnetoresistance with High Sensitivity of Polyaniline Interfaced with Nanotitania. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H664-H671	3.9	12
353	Correlation between the in-plain substrate strain and electrocatalytic activity of strontium ruthenate thin films in dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10794-10800	13	23
352	Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9881-9889	13	34
351	Soft template inducted hydrothermal BiYO3 catalysts for enhanced formic acid formation from the photocatalytic reduction of carbon dioxide. <i>RSC Advances</i> , 2016 , 6, 52665-52673	3.7	25
350	A novel material Li2NiFe2O4: Preparation and performance as anode of lithium ion battery. Materials Chemistry and Physics, 2016 , 177, 31-39	4.4	15

Hexavalent chromium induced tunable surface functionalization of graphite. RSC Advances, 2016, 6, 58354758362 349 Mechanically Strengthened Polyamide 66 Nanofibers Bundles via Compositing With Polyvinyl 348 3.9 11 Alcohol. Macromolecular Materials and Engineering, 2016, 301, 212-219 Magnetoresistive polyaniline-silicon carbide metacomposites: plasma frequency determination and 3.6 29 347 high magnetic field sensitivity. Physical Chemistry Chemical Physics, 2016, 18, 19536-43 Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading 346 7.1 413 levels for strain sensor applications. Journal of Materials Chemistry C, 2016, 4, 157-166 Epoxy nanocomposites with carbon nanotubes and montmorillonite: Mechanical properties and 345 2.7 10 electrical insulation. Journal of Composite Materials, 2016, 50, 3363-3372 Selectively assembled 2D microarrays from binary nanocrystals. CrystEngComm, 2016, 18, 3008-3014 344 6 3.3 MBsbauer spectroscopy of polymer nanocomposites 2016, 393-409 1 343 Synergistic effects of nano-silica on aluminum diethylphosphinate/polyamide 66 system for fire 1.6 342 15 retardancy. High Performance Polymers, 2016, 28, 140-146 Significantly enhanced mechanical and electrical properties of epoxy nanocomposites reinforced 341 3.7 25 with low loading of polyaniline nanoparticles. RSC Advances, 2016, 6, 21187-21192 Simultaneous Reduction of Vanadium (V) and Chromium (VI) in Wastewater by Nanosized ZnWO4 340 1.3 14 Photocatalysis. Journal of Nanoscience and Nanotechnology, 2016, 16, 2847-52 Synergistic carbon nanotube aerogel IPt nanocomposites toward enhanced energy conversion in 339 13 31 dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 3238-3244 Direct microscopic observation of shish-kebab structure in high-temperature electrospun iPP 338 3.3 14 fibers. Materials Letters, 2016, 172, 149-152 Interfacial crystallization and mechanical property of isotactic polypropylene based single-polymer 28 337 3.9 composites. Polymer, 2016, 90, 18-25 Manipulating the dimensional assembly pattern and crystalline structures of iron oxide 336 7.7 nanostructures with a functional polyolefin. Nanoscale, 2016, 8, 1915-20 Facile synthesis of mesoporous carbon nanocomposites from natural biomass for efficient dye 335 3.7 57 adsorption and selective heavy metal removal. RSC Advances, 2016, 6, 2259-2269 Enhancing Electrochemical Performances of TiO2 Porous Microspheres through Hybridizing with 6.7 334 42 FeTiO3 and Nanocarbon. Electrochimica Acta, 2016, 190, 556-565 Enhanced Methanol Oxidation with Annealed Atomic Layer Deposited Platinum Nanoparticles on 28 333 3.9 Carbon Nanotubes. Journal of the Electrochemical Society, 2016, 163, F1-F10 Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly. PLoS ONE, 2016 332 46 3.7

, 11, e0146957

(2016-2016)

331	Microcellular injection molded polylactic acid/poly (Leaprolactone) blends with supercritical CO2: Correlation between rheological properties and their foaming behavior. <i>Polymer Engineering and Science</i> , 2016 , 56, 939-946	2.3	18
330	2D Protein Supramolecular Nanofilm with Exceptionally Large Area and Emergent Functions. <i>Advanced Materials</i> , 2016 , 28, 7414-23	24	134
329	Ethylene-VInyl acetate/LDH nanocomposites with enhanced thermal stability, flame retardancy, and rheological property. <i>Polymer Composites</i> , 2016 , 37, 3449-3459	3	10
328	Coaxial electrospun fibers: applications in drug delivery and tissue engineering. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2016 , 8, 654-77	9.2	139
327	A Superhydrophobic Surface Templated by Protein Self-Assembly and Emerging Application toward Protein Crystallization. <i>Advanced Materials</i> , 2016 , 28, 579-87	24	110
326	Comparatively Thermal and Crystalline Study of Poly(methyl-methacrylate)/Polyacrylonitrile Hybrids: Core-Shell Hollow Fibers, Porous Fibers, and Thin Films. <i>Macromolecular Materials and Engineering</i> , 2016 , 301, 1327-1336	3.9	17
325	Total Synthesis of Rubriflordilactone B. <i>Angewandte Chemie</i> , 2016 , 128, 7078-7082	3.6	23
324	Polystyrene controlled growth of zerovalent nanoiron/magnetite on a sponge-like carbon matrix towards effective Cr(VI) removal from polluted water. <i>RSC Advances</i> , 2016 , 6, 110134-110145	3.7	20
323	Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. <i>Applied Physics Letters</i> , 2016 , 108, 011904	3.4	69
322	Toluene diisocyanate based phase-selective supramolecular oil gelator for effective removal of oil spills from polluted water. <i>Chemosphere</i> , 2016 , 153, 485-93	8.4	28
321	Organic vapor sensing behaviors of conductive thermoplastic polyurethane graphene nanocomposites. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4459-4469	7.1	179
320	Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. <i>Nanoscale</i> , 2016 , 8, 12977-89	7.7	364
319	An overview of multifunctional epoxy nanocomposites. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5890-	5 9 06	264
318	Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. <i>Polymer</i> , 2016 , 97, 11-19	3.9	129
317	Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 14150-9	9.5	216
316	Improve beam quality of laser proton acceleration with funnel-shaped-hole target. <i>International Journal of Modern Physics B</i> , 2016 , 30, 1650045	1.1	1
315	The enhanced electrical conductivity of cotton fabrics via polymeric nanocomposites. <i>Fibers and Polymers</i> , 2016 , 17, 402-407	2	7
314	Efficient and stable iron based perovskite La0.9Ca0.1Fe0.9Nb0.1O3-lanode material for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2016 , 316, 224-231	8.9	22

313	Monodisperse light color nanoparticle ink toward chromatic electrophoretic displays. <i>Nanoscale</i> , 2016 , 8, 10917-21	7.7	13
312	Thermoelectricphotoelectric composite nanocables induced a larger efficiency in dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9362-9369	13	21
311	Swelling behaviors of porous lignin based poly (acrylic acid). Chemosphere, 2016, 163, 610-619	8.4	43
310	Interfacial interaction enhancement by shear-induced <code>tylindrite</code> in isotactic polypropylene/glass fiber composites. <i>Polymer</i> , 2016 , 100, 111-118	3.9	45
309	Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. <i>Polymer</i> , 2016 , 103, 315-327	3.9	62
308	Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. <i>Nanoscale</i> , 2016 , 8, 19984-19993	7.7	100
307	CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. <i>Chemical Engineering Science</i> , 2016 , 153, 10-20	4.4	65
306	Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co3O4 nanoparticles. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	11
305	Hydrophobic Electrospun Polyimide Nanofibers for Self-cleaning Materials. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 358-368	3.9	38
304	Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families. <i>Nature Communications</i> , 2015 , 6, 6096	17.4	95
303	Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. <i>Fibers and Polymers</i> , 2015 , 16, 388-396	2	33
302	Magnetic amine-functionalized polyacrylic acid-nanomagnetite for hexavalent chromium removal from polluted water. <i>RSC Advances</i> , 2015 , 5, 60208-60219	3.7	51
301	A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13758-13766	13	55
300	Significant role of B urnedlyraphene in determining the morphology of LiNiO2 prepared under the air conditions. <i>Electrochimica Acta</i> , 2015 , 176, 240-248	6.7	12
299	Enhanced mechanical properties and anti-hydrothermal ageing behaviors of unsaturated polyester composites by carbon fibers interfaced with POSS. <i>Composites Science and Technology</i> , 2015 , 117, 168-	175 ⁶	38
298	Animal Feeds Extracted from Excess Sludge by Enzyme, Acid and Base Hydrolysis Processes. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 2084-2091	8.3	7
297	Transparent anhydridedured epoxy nanocomposites reinforced with polyaniline stabilized nanosilica. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8152-8165	7.1	43
296	Nanofiltration membrane achieving dual resistance to fouling and chlorine for greenßeparation of antibiotics. <i>Journal of Membrane Science</i> , 2015 , 493, 156-166	9.6	93

(2015-2015)

295	Shear-induced interfacial sheath structure in isotactic polypropylene/glass fiber composites. <i>Polymer</i> , 2015 , 70, 326-335	3.9	30
294	Electropolymerized polypyrrole nanocomposites with cobalt oxide coated on carbon paper for electrochemical energy storage. <i>Polymer</i> , 2015 , 67, 192-199	3.9	78
293	Dielectric properties and magnetoresistance behavior of polyaniline coated carbon fabrics. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3989-3998	7.1	34
292	Investigation of small molecular weight poly(acrylic acid) adsorption on 🗟 lumina. <i>Applied Surface Science</i> , 2015 , 345, 116-121	6.7	14
291	Enhancing oriented crystals in injection-molded HDPE through introduction of pre-shear. <i>Materials & Design</i> , 2015 , 78, 12-18		13
290	Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. <i>Superlattices and Microstructures</i> , 2015 , 85, 305-320	2.8	26
289	Multiwalled Carbon Nanotubes Composited with Palladium Nanocatalysts for Highly Efficient Ethanol Oxidation. <i>Journal of the Electrochemical Society</i> , 2015 , 162, F755-F763	3.9	31
288	Synthesis of layered double hydroxides/graphene oxide nanocomposite as a novel high-temperature CO2 adsorbent. <i>Journal of Energy Chemistry</i> , 2015 , 24, 127-137	12	98
287	Carbon monolith with embedded mesopores and nanoparticles as a novel adsorbent for water treatment. <i>RSC Advances</i> , 2015 , 5, 42540-42547	3.7	15
286	Chromium(III) oxide carbon nanocomposites lithium-ion battery anodes with enhanced energy conversion performance. <i>Chemical Engineering Journal</i> , 2015 , 277, 186-193	14.7	29
285	Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9817-9825	13	106
284	Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. <i>ACS Applied Materials & Distriction (Control of the Control of the</i>	9.5	134
283	Biotransformative removal of cationic Red X-GRL by anaerobic activated sludge. <i>RSC Advances</i> , 2015 , 5, 25699-25707	3.7	7
282	Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. <i>RSC Advances</i> , 2015 , 5, 34566-34571	3.7	36
281	Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13301-7	16.4	171
280	Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation. <i>Electrochimica Acta</i> , 2015 , 184, 452-465	6.7	24
279	Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23895-23904	13	45
278	Selective Desoldering Separation of Tinlead Alloy for Dismantling of Electronic Components from Printed Circuit Boards. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 1696-1700	8.3	47

277	Suppressing the skindore structure in injection-molded HDPE parts via the combination of pre-shear and UHMWPE. <i>RSC Advances</i> , 2015 , 5, 84483-84491	3.7	12
276	Enhanced electrochemical performances of MoO2 nanoparticles composited with carbon nanotubes for lithium-ion battery anodes. <i>RSC Advances</i> , 2015 , 5, 87286-87294	3.7	33
275	Ultrafine FePd Nanoalloys Decorated Multiwalled Cabon Nanotubes toward Enhanced Ethanol Oxidation Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 23920-31	9.5	49
274	Synthesis of Multifunctional Carbon Nanostructures. <i>World Scientific Series on Carbon Nanoscience</i> , 2015 , 89-126	0.5	1
273	Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 coreEhell composites and 3D graphene networks. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19545-19555	13	122
272	Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20778-20790	13	52
271	Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 7237-7244	3.7	34
270	Understanding the evolution of stratified extracellular polymeric substances in full-scale activated sludges in relation to dewaterability. <i>RSC Advances</i> , 2015 , 5, 1282-1294	3.7	54
269	Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 162-176	7.1	74
268	Electropolymerized Polypyrrole Nanocoatings on Carbon Paper for Electrochemical Energy Storage. <i>ChemElectroChem</i> , 2015 , 2, 119-126	4.3	38
267	Home-made epoxy emulsion sizing agent for treating carbon fibers: Thermal stability and mechanical properties. <i>Journal of Composite Materials</i> , 2015 , 49, 2877-2886	2.7	8
266	Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1498-502	3.6	49
265	Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 469-480	13	268
264	Hyperbranched Polyester-Stabilized Nanotitania-Coated Vectran Fibers with Improved UV-Blocking Performance. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 64-69	3.9	10
263	Polyaniline coating with various substrates for hexavalent chromium removal. <i>Applied Surface Science</i> , 2015 , 334, 7-14	6.7	97
262	Multi-walled carbon nanotubes supported Pd composite nanoparticles hydrothermally produced from technical grade PdO precursor. <i>Electrochimica Acta</i> , 2015 , 176, 1256-1265	6.7	14
261	Magnetic epoxy nanocomposites with superparamagnetic MnFe2O4 nanoparticles. <i>AIP Advances</i> , 2015 , 5, 097183	1.5	7
260	Hierarchical Fe3O4 CoreBhell Layered Double Hydroxide Composites as Magnetic Adsorbents for Anionic Dye Removal from Wastewater. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4182-419	1 ^{2.3}	43

(2014-2015)

259	Strengthened Magnetoresistive Epoxy Nanocomposite Papers Derived from Synergistic Nanomagnetite-Carbon Nanofiber Nanohybrids. <i>Advanced Materials</i> , 2015 , 27, 6277-82	24	65
258	Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. <i>Nanomaterials</i> , 2015 , 5, 755-777	5.4	60
257	Morphology-dependent performance of Mg3AlfIO3 layered double hydroxide as a nanofiller for polypropylene nanocomposites. <i>RSC Advances</i> , 2015 , 5, 51900-51911	3.7	20
256	Rechargeable Co3O4 porous nanoflake carbon nanotube nanocomposite lithium-ion battery anodes with enhanced energy performances. <i>RSC Advances</i> , 2015 , 5, 46509-46516	3.7	20
255	Polymer nanocomposites for energy storage, energy saving, and anticorrosion. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14929-14941	13	165
254	Multifunctional Nanofibers towards Active Biomedical Therapeutics. <i>Polymers</i> , 2015 , 7, 186-219	4.5	76
253	Effects of Graphene Oxide Modified Sizing Agents on Interfacial Properties of Carbon Fibers/Epoxy Composites. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 9807-11	1.3	16
252	Indium recovery from waste liquid crystal displays by polyvinyl chloride waste. <i>RSC Advances</i> , 2015 , 5, 102836-102843	3.7	14
251	TiO2graphene hybrid nanostructures by atomic layer deposition with enhanced electrochemical performance for Pb(II) and Cd(II) detection. <i>RSC Advances</i> , 2015 , 5, 4343-4349	3.7	23
250	Synergies among the self-assembled flucleating agent and the sheared isotactic polypropylene matrix. <i>Polymer</i> , 2015 , 60, 40-49	3.9	40
249	Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process. <i>Bioresource Technology</i> , 2015 , 181, 247-53	11	115
248	NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 4772-7	9.5	66
247	Carboxyl Multiwalled Carbon-Nanotube-Stabilized Palladium Nanocatalysts toward Improved Methanol Oxidation Reaction. <i>ChemElectroChem</i> , 2015 , 2, 559-570	4.3	46
246	Preparation of Ni and Fe Doped Molybdate-Based Catalyst from Nille Layered Double Hydroxide for the Catalytic Wet Air Oxidation of Dyes. <i>Science of Advanced Materials</i> , 2015 , 7, 1435-1442	2.3	3
245	Electrochemical Sensors Based on Semiconductor Nanostructures Modified Electrodes. <i>Science of Advanced Materials</i> , 2015 , 7, 2069-2083	2.3	7
244	Vinyl ester resin: Rheological behaviors, curing kinetics, thermomechanical, and tensile properties. <i>AICHE Journal</i> , 2014 , 60, 266-274	3.6	23
243	Silver-Doped TiO2/Polyurethane Nanocomposites for Antibacterial Textile Coating. <i>BioNanoScience</i> , 2014 , 4, 136-148	3.4	21
242	Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer. <i>Electrochimica Acta</i> , 2014 , 132, 58-66	6.7	75

241	Magnetocapacitance in magnetic microtubular carbon nanocomposites under external magnetic field. <i>Nano Energy</i> , 2014 , 6, 180-192	17.1	53
240	Poly-dicyclopentadiene-wollastonite composites toward structural applications. <i>Journal of Composite Materials</i> , 2014 , 48, 2023-2031	2.7	9
239	Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. <i>Nanoscale</i> , 2014 , 6, 181-9	7.7	74
238	Magnetoresistive conductive polymer-tungsten trioxide nanocomposites with ultrahigh sensitivity at low magnetic field. <i>Polymer</i> , 2014 , 55, 944-950	3.9	19
237	Decomposition mechanisms of cured epoxy resins in near-critical water. <i>Journal of Applied Polymer Science</i> , 2014 , 132, n/a-n/a	2.9	2
236	Dry-grinding Synthesized Multi-walled Carbon Nanotubes Supported PdO Catalyst for Ethanol Oxidation Reaction. <i>Electrochimica Acta</i> , 2014 , 149, 186-192	6.7	21
235	Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range. Journal of Materials Chemistry A, 2014 , 2, 18454-18462	13	50
234	Interfacially reinforced unsaturated polyester composites by chemically grafting different functional POSS onto carbon fibers. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18293-18303	13	80
233	Positive and negative magnetoresistance phenomena observed in magnetic electrospun polyacrylonitrile-based carbon nanocomposite fibers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 715-722	7.1	33
232	Electromagnetic Field Absorbing Polypropylene Nanocomposites with Tuned Permittivity and Permeability by Nanoiron and Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 24784-247	'જે ⁸	79
231	Carbon Coating and Zn 2+ Doping of Magnetite Nanorods for Enhanced Electrochemical Energy Storage. <i>Electrochimica Acta</i> , 2014 , 148, 118-126	6.7	28
230	Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2256-2265	13	127
229	Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16039-48	3.6	30
228	Ultrafast Cr(VI) removal from polluted water by microwave synthesized iron oxide submicron wires. <i>Chemical Communications</i> , 2014 , 50, 8036-9	5.8	32
227	One-pot synthesis of size- and morphology-controlled 1-D iron oxide nanochains with manipulated magnetic properties. <i>Chemical Communications</i> , 2014 , 50, 201-3	5.8	28
226	Cellulose derived magnetic mesoporous carbon nanocomposites with enhanced hexavalent chromium removal. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17454-17462	13	143
225	Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. Journal of Materials Chemistry C, 2014 , 2, 9478-9488	7.1	72
224	A simple and reliable method for determining the delamination degree of nitrate and glycine intercalated LDHs in formamide. <i>Chemical Communications</i> , 2014 , 50, 10130-2	5.8	26

223	Octagonal prism shaped lithium iron phosphate composite particles as positive electrode materials for rechargeable lithium-ion battery. <i>Electrochimica Acta</i> , 2014 , 146, 585-590	6.7	34
222	Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent. <i>RSC Advances</i> , 2014 , 4, 36560	3.7	49
221	PtNi bimetallic composite nanocatalysts prepared by using multi-walled carbon nanotubes as reductants for ethanol oxidation reaction. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 17622-17	633	34
220	Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances. <i>Nano Energy</i> , 2014 , 9, 41-49	17.1	131
219	Pulsed laser deposited Ag nanoparticles on nickel hydroxide nanosheet arrays for highly sensitive surface-enhanced Raman scattering spectroscopy. <i>Applied Surface Science</i> , 2014 , 316, 66-71	6.7	17
218	Antibody nanosensors: a detailed review. <i>RSC Advances</i> , 2014 , 4, 43725-43745	3.7	59
217	Polyaniline Coated Ethyl Cellulose with Improved Hexavalent Chromium Removal. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2070-2080	8.3	144
216	Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal. <i>RSC Advances</i> , 2014 , 4, 29855	3.7	106
215	Unusual Function of Modified Polyolefins for Manipulating Magnetic Nanostructures. <i>Jom</i> , 2014 , 66, 655-659	2.1	1
214	Highly Monodisperse Sub-microspherical Poly(glycidyl methacrylate) Nanocomposites with Highly Stabilized Gold Nanoparticles. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 1098-1106	2.6	13
213	Anthraquinone on Porous Carbon Nanotubes with Improved Supercapacitor Performance. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8262-8270	3.8	121
212	One-pot in situ synthesized TiO 2 /layered double hydroxides (LDHs) composites toward environmental remediation. <i>Materials Letters</i> , 2014 , 114, 111-114	3.3	25
211	One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. <i>Nano Energy</i> , 2014 , 7, 86-96	17.1	335
210	Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide. <i>Journal of Membrane Science</i> , 2014 , 452, 82-89	9.6	148
209	High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. <i>Nano Research</i> , 2014 , 7, 704-716	10	274
208	Adsorption of acid red from dye wastewater by Zn2Al-NO3 LDHs and the resource of adsorbent sludge as nanofiller for polypropylene. <i>Journal of Alloys and Compounds</i> , 2014 , 587, 99-104	5.7	38
207	Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 5094-104	9.5	92
206	Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. <i>Polymer</i> , 2014 , 55, 4405-4419	3.9	71

205	Biocompatible electrospun tactic poly(methyl methacrylate) blend fibers. <i>Polymer</i> , 2014 , 55, 3261-3269	9 3.9	11
204	Reinforced unsaturated polyester composites by chemically grafting amino-POSS onto carbon fibers with active double spiral structural spiralphosphodicholor. <i>Composites Science and Technology</i> , 2014 , 100, 158-165	8.6	110
203	Strain Sensitive Polyurethane Nanocomposites Reinforced with Multiwalled Carbon Nanotubes. <i>Energy and Environment Focus</i> , 2014 , 3, 85-93		11
202	Novel NaMoD匠MoOlhybrid material as highly efficient CWAO catalyst for dye degradation at ambient conditions. <i>Scientific Reports</i> , 2014 , 4, 6797	4.9	29
201	Multifunctional Nanocomposites for Environmental Remediation 2014, 71-84		
200	Electrospinning and microwave absorption of polyaniline/polyacrylonitrile/multiwalled carbon nanotubes nanocomposite fibers. <i>Fibers and Polymers</i> , 2014 , 15, 2290-2296	2	33
199	Synergistic Interactions between Activated Carbon Fabrics and Toxic Hexavalent Chromium. <i>ECS Journal of Solid State Science and Technology</i> , 2014 , 3, M1-M9	2	24
198	Flame-Retardant Polypropylene/Multiwall Carbon Nanotube Nanocomposites: Effects of Surface Functionalization and Surfactant Molecular Weight. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 327-340	2.6	70
197	Recent Advances in Polymeric Solvent-Resistant Nanofiltration Membranes. <i>Advances in Polymer Technology</i> , 2014 , 33, n/a-n/a	1.9	88
196	Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers. <i>Materials Research Express</i> , 2014 , 1, 035029	1.7	15
195	Polyethylenimine facilitated ethyl cellulose for hexavalent chromium removal with a wide pH range. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 19816-24	9.5	130
194	Magnetic Polystyrene Nanocomposites Reinforced with Magnetite Nanoparticles. <i>Macromolecular Materials and Engineering</i> , 2014 , 299, 485-494	3.9	25
193	Formic acid oxidation reaction on a PdxNiy bimetallic nanoparticle catalyst prepared by a thermal decomposition process using ionic liquids as the solvent. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 7326-7337	6.7	43
192	Synthesis of ZnMoO4/Na2Mo4O13/⊞MoO3 Hybrid Catalyst for the Catalytic Wet Air Oxidation of Dye Under Room Condition. <i>Science of Advanced Materials</i> , 2014 , 6, 2159-2164	2.3	4
191	Fabrication and Characterization of Non-Enzymatic Glucose Sensor Based on Co3O4 Nanoparticles. <i>Sensor Letters</i> , 2014 , 12, 69-74	0.9	6
190	Synthesis of polypropylene/Mg3Al X (X = CO32 Π NO3 Π Cl Π SO42 Π LDH nanocomposites using a solvent mixing method: thermal and melt rheological properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9928	13	55
189	Graphene oxide cross-linked chitosan nanocomposite membrane. <i>Applied Surface Science</i> , 2013 , 280, 989-992	6.7	131
188	Hydrothermal process synthesized electrocatalytic multi-walled carbon nanotubes-inserted gold composite microparticles toward ethanol oxidation reaction. <i>Journal of Applied Electrochemistry</i> , 2013 , 43, 567-574	2.6	10

(2013-2013)

187	Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10805	13	152
186	Understanding dopant and defect effect on H2S sensing performances of graphene: A first-principles study. <i>Computational Materials Science</i> , 2013 , 69, 222-228	3.2	119
185	Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. <i>Polymer</i> , 2013 , 54, 3594-3604	3.9	136
184	Using ionic liquid as the solvent to prepare PdNi bimetallic nanoparticles by a pyrolysis method for ethanol oxidation reaction. <i>Materials Chemistry and Physics</i> , 2013 , 142, 403-411	4.4	31
183	Synergistic interactions between multi-walled carbon nanotubes and toxic hexavalent chromium. Journal of Materials Chemistry A, 2013 , 1, 2011-2021	13	109
182	Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis. <i>Chemical Communications</i> , 2013 , 49, 258-60	5.8	39
181	A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. <i>Environmental Science & Environmental </i>	10.3	192
180	A novel gelBolBtrategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. <i>Materials Letters</i> , 2013 , 107, 307-310	3.3	38
179	Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13064	13	41
178	Iron-core carbon-shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability. <i>RSC Advances</i> , 2013 , 3, 9453	3.7	45
177	Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 15278	13	96
176	An overview of the engineered graphene nanostructures and nanocomposites. <i>RSC Advances</i> , 2013 , 3, 22790	3.7	167
175	Polyaniline nanocomposites with negative permittivity. <i>Journal of Applied Polymer Science</i> , 2013 , 130, 2238-2244	2.9	35
174	Hexavalent chromium synthesized polyaniline nanostructures: Magnetoresistance and electrochemical energy storage behaviors. <i>Polymer</i> , 2013 , 54, 5974-5985	3.9	35
173	Decomposition of Epoxy Model Compounds in Near-Critical Water. <i>Chemical Engineering and Technology</i> , 2013 , 36, 2117-2124	2	5
172	Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene. <i>Chemical Communications</i> , 2013 , 49, 2679-81	5.8	34
171	Giant magnetoresistance in non-magnetic phosphoric acid doped polyaniline silicon nanocomposites with higher magnetic field sensing sensitivity. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10866-75	3.6	35
170	Polypropylene/Mg3AlEartrazine LDH nanocomposites with enhanced thermal stability, UV absorption, and rheological properties. <i>RSC Advances</i> , 2013 , 3, 26017	3.7	36

169	Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 729-743	7.1	140
168	Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. <i>Energy and Environmental Science</i> , 2013 , 6, 194-204	35.4	122
167	Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. <i>ACS Applied Materials & District Research</i> , 2013, 5, 898-910	9.5	164
166	Structural evolution and degradation mechanism of Vectran fibers upon exposure to UV-radiation. <i>Polymer Degradation and Stability</i> , 2013 , 98, 1744-1753	4.7	20
165	Fluorescent electrospun polyvinyl alcohol/[email[protected] nanocomposite fibers. <i>Journal of Composite Materials</i> , 2013 , 47, 3175-3185	2.7	34
164	Synthesis of nano-sized spherical Mg3Al¶O3 layered double hydroxide as a high-temperature CO2 adsorbent. <i>RSC Advances</i> , 2013 , 3, 3414	3.7	108
163	Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. <i>Polymer</i> , 2013 , 54, 1820-1831	3.9	246
162	Giant Magnetoresistive Phosphoric Acid Doped PolyanilineBilica Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6426-6436	3.8	67
161	Magnetic nanocomposites for environmental remediation. Advanced Powder Technology, 2013, 24, 459)-46B	118
160	Polyaniline stabilized barium titanate nanoparticles reinforced epoxy nanocomposites with high dielectric permittivity and reduced flammability. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2886	7.1	90
159	Electrocatalytic activity of multi-walled carbon nanotubes-supported PtxPdy catalysts prepared by a pyrolysis process toward ethanol oxidation reaction. <i>Electrochimica Acta</i> , 2013 , 100, 147-156	6.7	49
158	An overview of the magnetoresistance phenomenon in molecular systems. <i>Chemical Society Reviews</i> , 2013 , 42, 5907-43	58.5	82
157	Microwave synthesized magnetic tubular carbon nanocomposite fabrics toward electrochemical energy storage. <i>Nanoscale</i> , 2013 , 5, 1825-30	7.7	30
156	Catalysis of Multi-walled Carbon Nanotubes Supported PdxCoy Nanoparticles Prepared by a Pyrolysis Method Using Ionic Liquids as the Solvent toward Ethanol Oxidation Reaction. <i>Journal of the Chinese Chemical Society</i> , 2013 , 60, 1135-1143	1.5	4
155	Magnetite B olypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior. Journal of Physical Chemistry C, 2013 , 117, 10191-10202	3.8	104
154	Flame-Retardant Epoxy Resin Nanocomposites Reinforced with Polyaniline-Stabilized Silica Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 7718-7728	3.9	130
153	Magnetically Soft and Hard Polypropylene/Cobalt Nanocomposites: Role of Maleic Anhydride Grafted Polypropylene. <i>Macromolecules</i> , 2013 , 46, 2357-2368	5.5	48
152	Fabrication of oxidized sodium carboxymethylcellulose from viscose fibers and their viscosity behaviors. <i>Fibers and Polymers</i> , 2013 , 14, 1266-1270	2	6

Silica Doped Nanopolyaniline with Endured Electrochemical Energy Storage and the Magnetic Field Effects. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13000-13010	3.8	62
Multiwalled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. <i>ECS Journal of Solid State Science and Technology</i> , 2013 , 2, M3008-M3014	2	17
Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides. <i>RSC Advances</i> , 2013 , 3, 24247	3.7	19
Coaxial electrospun nanostructures and their applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1	15 <u>1</u> 3	163
Electrochemical Properties and Electrochromic Behaviors of the Sol © el Derived Tungsten Trioxide Thin Films. <i>Energy and Environment Focus</i> , 2013 , 2, 112-120		28
Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition. <i>Materials</i> , 2013 , 6, 5602-5612	3.5	20
Hierarchical 3D Nanocomposites towards Advanced Electrochemical Energy Storage. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1497, 1		
Electropolymerized Polyaniline Nanocomposites from Multi-Walled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. <i>Journal of the Electrochemical Society</i> , 2013 , 160, G3038-G3045	3.9	56
Microwave Assisted Formation of Magnetic Core-Shell Carbon Nanostructure. <i>ECS Solid State Letters</i> , 2013 , 2, M65-M68		20
Separating positive and negative magnetoresistance for polyaniline-silicon nanocomposites in variable range hopping regime. <i>Applied Physics Letters</i> , 2013 , 102, 212403	3.4	29
Magnetic Polyolefin-based Nanocomposites. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1499, 1		
Nanocomposites 2013. <i>Journal of Nanotechnology</i> , 2013 , 2013, 1-1	3.5	
Na+ and K+-Exchanged Zirconium Phosphate (ZrP) as High-Temperature CO2 Adsorbents. <i>Science of Advanced Materials</i> , 2013 , 5, 469-474	2.3	25
Synthesis and Characterization of CoR/KxTi2O5 as Novel NOx Storage and Reduction (NSR) Catalyst. <i>Science of Advanced Materials</i> , 2013 , 5, 1743-1749	2.3	2
Influence of Preparation Conditions on the Properties of Lithium Titanate Fabricated by a Solid-state Method. <i>Journal of New Materials for Electrochemical Systems</i> , 2013 , 16, 25-32	2.8	5
Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. <i>Polymer</i> , 2012 , 53, 801-809	3.9	205
Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. <i>Polymer</i> , 2012 , 53, 2109-2120	3.9	144
Orthogonal array optimization of ionic liquid based dispersive liquid-liquid microextraction for toxic anilines in foods. <i>Science China Chemistry</i> , 2012 , 55, 277-284	7.9	8
	Multiwalled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. ECS Journal of Solid State Science and Technology, 2013, 2, M3008-M3014 Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides. RSC Advances, 2013, 3, 24247 Coaxial electrospun nanostructures and their applications. Journal of Materials Chemistry A, 2013, 1, 1 Electrochemical Properties and Electrochromic Behaviors of the Solfel Derived Tungsten Trioxide Thin Films. Energy and Environment Focus, 2013, 2, 112-120 Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition. Materials, 2013, 6, 5602-5612 Hierarchical 3D Nanocomposites towards Advanced Electrochemical Energy Storage. Materials Research Society Symposia Proceedings, 2013, 1497, 1 Electropolymerized Polyaniline Nanocomposites from Multi-Walled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. Journal of the Electrochemical Society, 2013, 160, 2038-63045 Microwave Assisted Formation of Magnetic Core-Shell Carbon Nanostructure. ECS Solid State Letters, 2013, 2, M65-M68 Separating positive and negative magnetoresistance for polyaniline-silicon nanocomposites in variable range hopping regime. Applied Physics Letters, 2013, 102, 212403 Magnetic Polyolefin-based Nanocomposites. Materials Research Society Symposia Proceedings, 2013, 1499, 1 Nanocomposites 2013. Journal of Nanotechnology, 2013, 2013, 1-1 Na+ and K+-Exchanged Zirconium Phosphate (ZrP) as High-Temperature CO2 Adsorbents. Science of Advanced Materials, 2013, 5, 469-474 Synthesis and Characterization of Co8/KxTi2O5 as Novel NOx Storage and Reduction (NSR) Catalyst. Science of Advanced Materials, 2013, 5, 1743-1749 Influence of Preparation Conditions on the Properties of Lithium Titanate Fabricated by a Solid-state Method. Journal of New Materials for Electrochemical Systems, 2013, 16, 25-32 Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Pol	Multiwalled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage, ECS Journal of Solid State Science and Technology, 2013, 2, M3008-M3014 Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides, RSC Advances, 2013, 3, 24247 Coaxial electrospun nanostructures and their applications. Journal of Materials Chemistry A, 2013, 1, 11513 Electrochemical Properties and Electrochromic Behaviors of the Solled Derived Tungsten Trioxide Thin Films. Energy and Environment Focus, 2013, 2, 112-120 Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition. Materials, 2013, 6, 5602-5612 Hierarchical 3D Nanocomposites towards Advanced Electrochemical Energy Storage. Materials Research Society Symposia Proceedings, 2013, 1497, 1 Electropolymerized Polyaniline Nanocomposites from Multi-Walled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. Journal of the Electrochemical Society, 2013, 160, G3038-G3045 Microwave Assisted Formation of Magnetic Core-Shell Carbon Nanostructure. ECS Solid State Letters, 2013, 2, M65-M68 Separating positive and negative magnetoresistance for polyaniline-silicon nanocomposites in variable range hopping regime. Applied Physics Letters, 2013, 102, 212403 Magnetic Polyolefin-based Nanocomposites. Materials Research Society Symposia Proceedings, 2013, 1499, 1 Nanocomposites 2013. Journal of Nanotechnology, 2013, 2013, 1-1 Na+ and K+-Exchanged Zirconium Phosphate (ZrP) as High-Temperature CO2 Adsorbents. Science of Advanced Materials, 2013, 5, 469-474 Synthesis and Characterization of Co8/(KxTi2O5 as Novel NOx Storage and Reduction (NSR) Catalyst. Science of Advanced Materials, 2013, 5, 1743-1749 Jinfluence of Preparation Conditions on the Properties of Lithium Titanate Fabricated by a Solid-State Method. Journal of New Materials for Electrochemical Systems, 2013, 16, 25-32 Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properti

133	Advanced titania nanostructures and composites for lithium ion battery. <i>Journal of Materials Science</i> , 2012 , 47, 2519-2534	4.3	243
132	Polypyrrole metacomposites with different carbon nanostructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4996		96
131	Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. <i>ACS Applied Materials & ACS Applied & </i>	9.5	151
130	Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites. <i>RSC Advances</i> , 2012 , 2, 1136-1143	3.7	59
129	Polypropylene/layered double hydroxide nanocomposites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 191	113	77
128	Looped carbon capturing and environmental remediation: case study of magnetic polypropylene nanocomposites. <i>RSC Advances</i> , 2012 , 2, 4844	3.7	38
127	Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. <i>RSC Advances</i> , 2012 , 2, 11007	3.7	193
126	Property manipulated polypropylenellon nanocomposites with maleic anhydride polypropylene. Journal of Materials Chemistry, 2012 , 22, 15928		27
125	Electrochromic Poly(DNTD)/WO3 Nanocomposite Films via Electorpolymerization. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16286-16293	3.8	50
124	Magnetic Graphene Nanoplatelet Composites toward Arsenic Removal. <i>ECS Journal of Solid State Science and Technology</i> , 2012 , 1, M1-M5	2	78
123	Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@FeO core-shell nanoparticles. <i>Polymer</i> , 2012 , 53, 3642-3652	3.9	75
122	Modified solid-state reaction synthesized cathode lithium iron phosphate (LiFePO4) from different phosphate sources. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 3812-20	1.3	11
121	Morphology and composition controllable synthesis of MgAlfiO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity. <i>Applied Clay Science</i> , 2012 , 55, 18-26	5.2	155
120	High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. <i>Energy and Environmental Science</i> , 2012 , 5, 9773	35.4	76
119	Morphology- and Phase-Controlled Iron Oxide Nanoparticles Stabilized with Maleic Anhydride Grafted Polypropylene. <i>Angewandte Chemie</i> , 2012 , 124, 8972-8975	3.6	10
118	Magnetic electrospun fluorescent polyvinylpyrrolidone nanocomposite fibers. <i>Polymer</i> , 2012 , 53, 4501-	45,1	46
117	Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. <i>Polymer</i> , 2012 , 53, 5953-5964	3.9	148
116	Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 25052-25064	3.8	194

(2011-2012)

115	Water soluble carboxymethylcellulose fibers derived from alkalization-etherification of viscose fibers. <i>Fibers and Polymers</i> , 2012 , 13, 748-753	2	12
114	Hybrid Electrochromic Fluorescent Poly(DNTD)/[email[protected] Composite Films. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 4500-4510	3.8	48
113	Magnetoresistive Conductive Polyaniline B arium Titanate Nanocomposites with Negative Permittivity. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15731-15740	3.8	91
112	Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. <i>Materials Research</i> , 2012 , 15, 510-516	1.5	29
111	Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. <i>Journal of Materials Chemistry</i> , 2012 , 22, 835-844		83
110	Very large magnetoresistive graphene disk with negative permittivity. <i>Nanoscale</i> , 2012 , 4, 152-6	7.7	40
109	Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. <i>Langmuir</i> , 2012 , 28, 10246-55	4	159
108	One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. <i>Environmental Science & Environmental Science</i>	10.3	429
107	Preparation of stable dispersions of layered double hydroxides (LDHs) in nonpolar hydrocarbons: new routes to polyolefin/LDH nanocomposites. <i>Chemical Communications</i> , 2012 , 48, 7450-2	5.8	98
106	Morphology- and phase-controlled iron oxide nanoparticles stabilized with maleic anhydride grafted polypropylene. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8842-5	16.4	63
105	Kinetic Study of Epoxy Resin Decomposition in Near-Critical Water. <i>Chemical Engineering and Technology</i> , 2012 , 35, 713-719	2	16
104	Oxidized regenerated cellulose-based hemostat with microscopically gradient structure. <i>Carbohydrate Polymers</i> , 2012 , 88, 1023-1032	10.3	45
103	Enhanced toughness and shape memory behaviors of toughed epoxy resin. <i>High Performance Polymers</i> , 2012 , 24, 702-709	1.6	28
102	Surfactant-Free Synthesized Magnetic Polypropylene Nanocomposites: Rheological, Electrical, Magnetic, and Thermal Properties. <i>Macromolecules</i> , 2011 , 44, 4382-4391	5.5	99
101	Electrocatalysis of Sandwich-Structured Pd/Polypyrrole/Pd Composites toward Formic Acid Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 7077-7082	3.9	80
100	Comprehensive and sustainable recycling of polymer nanocomposites. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16239		26
99	Polyaniline-tungsten oxide metacomposites with tunable electronic properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 342-348		142
98	Phosphorus-doped titania nanotubes with enhanced photocatalytic activity. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 225, 81-87	4.7	58

97	Nanoporous poly(methyl methacrylate)-quantum dots nanocomposite fibers toward biomedical applications. <i>Polymer</i> , 2011 , 52, 5817-5829	3.9	48
96	Electromagnetic Field Shielding Polyurethane Nanocomposites Reinforced with CoreBhell FeBilica Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15304-15310	3.8	222
95	Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. <i>Langmuir</i> , 2011 , 27, 7926-33	4	248
94	Electrical and dielectric properties of polyaniline Al2O3 nanocomposites derived from various Al2O3 nanostructures. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3952		134
93	Multifunctional composite core-shell nanoparticles. <i>Nanoscale</i> , 2011 , 3, 4474-502	7.7	367
92	Poly(propylene)/Graphene Nanoplatelet Nanocomposites: Melt Rheological Behavior and Thermal, Electrical, and Electronic Properties. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 1951-1959	2.6	161
91	Poly(propylene) Nanocomposites Containing Various Carbon Nanostructures. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2429-2438	2.6	74
90	Poly(propylene)/Carbon Nanofiber Nanocomposites: Ex Situ Solvent-Assisted Preparation and Analysis of Electrical and Electronic Properties. <i>Macromolecular Materials and Engineering</i> , 2011 , 296, 434-443	3.9	69
89	Ex Situ Solvent-Assisted Preparation of Magnetic Poly(propylene) 8nocomposites Filled with Fe@FeO Nanoparticles. <i>Macromolecular Materials and Engineering</i> , 2011 , 296, 850-857	3.9	15
88	Strain-Sensing Elastomer/Carbon Nanofiber Metacomposites <i>Journal of Physical Chemistry C</i> , 2011 , 115, 13215-13222	3.8	104
87	Promoted Soot Oxidation by Doped K2Ti2O5 Catalysts and NO Oxidation Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 8384-8388	3.9	29
86	Electron Transfer and Trapping in Natural pl Bipolar Polymer-Based Bilayer Films. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22863-22869	3.8	10
85	Ionic liquid assisted electrospinning of quantum dots/elastomer composite nanofibers. <i>Polymer</i> , 2011 , 52, 1954-1962	3.9	59
84	Magnetic polyacrylonitrile-Fe@FeO nanocomposite fibers - Electrospinning, stabilization and carbonization. <i>Polymer</i> , 2011 , 52, 2947-2955	3.9	82
83	Polypyrrole-Titania Nanocomposites Derived from Different Oxidants. <i>Journal of the Electrochemical Society</i> , 2011 , 158, K205	3.9	65
82	Magnetic Polypropylene Nanocomposites Reinforced with In-situ Fabricated Iron Oxide Nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1312, 1		2
81	Epoxy resin nanocomposites reinforced with ionized liquid stabilized carbon nanotubes. <i>International Journal of Smart and Nano Materials</i> , 2011 , 2, 176-193	3.6	36
80	Electrical conduction investigation of stainless steel wire-reinforced cotton fabric composites by electrospraying of fluoropolymer. <i>Journal of the Textile Institute</i> , 2011 , 102, 434-441	1.5	4

79	Simultaneous Removal of Soot and NOx from Lean-Burn Engine Emissions Over Potassium Dititanate-Based Catalysts. <i>Science of Advanced Materials</i> , 2011 , 3, 989-993	2.3	4
78	Cyclic Voltammetric Preparation of Palladium Nanoparticles for Ethanol Oxidation Reaction. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 11415-11420	3.9	38
77	Electrospun Polyimide Nanocomposite Fibers Reinforced with CoreBhell Fe-FeO Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8844-8850	3.8	117
76	Magnetic and Magnetoresistance Behaviors of Solvent Extracted Particulate Iron/Polyacrylonitrile Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 212-219	3.8	47
75	Sulfur Poisoning and Regeneration of NOx StorageReduction Cu/K2Ti2O5 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 7330-7335	3.9	11
74	In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4937		282
73	Carbon-stabilized iron nanoparticles for environmental remediation. <i>Nanoscale</i> , 2010 , 2, 917-9	7.7	195
72	Polypyrrole/Silicon Carbide Nanocomposites with Tunable Electrical Conductivity. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3874-3882	3.8	169
71	Conductive Polypyrrole/Tungsten Oxide Metacomposites with Negative Permittivity. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16335-16342	3.8	167
70	Magnetic Epoxy Resin Nanocomposites Reinforced with CoreBhell Structured [email©protected] Nanoparticles: Fabrication and Property Analysis. <i>ACS Applied Materials & Discrete American Action Company (Property Analysis and Property Action Company) (Property Action Com</i>)-2157	124
69	Electrical conductivity manipulation and switching phenomena of poly(p-phenylenebenzobisthiazole) thin film by doping process. <i>Journal of Materials Chemistry</i> , 2010 , 20, 568-574		23
68	Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 2415-2426	2.3	80
67	Poly (vinyl alcohol) thin film filled with CdSeInS quantum dots: Fabrication, characterization and optical properties. <i>Materials Chemistry and Physics</i> , 2010 , 119, 237-242	4.4	79
66	Enhanced Electrical Switching and Electrochromic Properties of Poly(p-phenylenebenzobisthiazole) Thin Films Embedded with Nano-WO3. <i>Advanced Functional Materials</i> , 2010 , 20, 3076-3084	15.6	104
65	Magnetic and Electron Transport Behaviors of Conductive-Polymer Nanocomposites 2010 , 503-529		
64	Electrospun Magnetic Fibrillar Polystyrene Nanocomposites Reinforced with Nickel Nanoparticles. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 1775-1783	2.6	63
63	Manipulated Electrospun PVA Nanofibers with Inexpensive Salts. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 958-965	3.9	73
62	Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with		

61	Magnetic Polymer Nanocomposites 2010 , 135-158		1
60	Electrospun Polyacrylonitrile Nanocomposite Fibers Reinforced with Magnetic Nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1240, 1		1
59	Differential scanning calorimetry investigation on vinyl ester resin curing process for polymer nanocomposite fabrication. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 3278-85	1.3	18
58	Formation and structural characterization of potassium titanates and the potassium ion exchange property. <i>Materials Research Bulletin</i> , 2009 , 44, 1973-1977	5.1	29
57	Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research, 2009 , 11, 1441-1452	2.3	123
56	Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. <i>Polymer</i> , 2009 , 50, 4189-4198	3.9	292
55	Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. <i>Acta Materialia</i> , 2009 , 57, 267-277	8.4	136
54	Energy Storage Structural Composites: a Review. <i>Journal of Composite Materials</i> , 2009 , 43, 549-560	2.7	62
53	Molecular NO(2) induced K(2)Ti(2)O(5)-K(2)Ti(6)O(13) structure switching in the dry gas phase: lattice potassium reactivity. <i>Chemical Communications</i> , 2009 , 5284-6	5.8	12
52	Magnetic and magnetoresistance behaviors of particulate iron/vinyl ester resin nanocomposites. <i>Journal of Applied Physics</i> , 2008 , 104, 014314	2.5	44
51	Towards Development of a Self-Healing Composite using a Mendable Polymer and Resistive Heating. <i>Journal of Composite Materials</i> , 2008 , 42, 2869-2881	2.7	104
50	Performance of Thin-Film Lithium Energy Cells under Uniaxial Pressure. <i>Advanced Engineering Materials</i> , 2008 , 10, 393-399	3.5	19
49	Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. <i>Composites Science and Technology</i> , 2008 , 68, 164-170	8.6	101
48	Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites. <i>Composites Science and Technology</i> , 2008 , 68, 1513-1520	8.6	136
47	Embedding thin-film lithium energy cells in structural composites. <i>Composites Science and Technology</i> , 2008 , 68, 1935-1941	8.6	73
46	Facile monomer stabilization approach to fabricate iron/vinyl ester resin nanocomposites. <i>Composites Science and Technology</i> , 2008 , 68, 2551-2556	8.6	39
45	Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. <i>Journal of Applied Physics</i> , 2007 , 101, 09M511	2.5	91
44	CuO nanoparticle filled vinyl-ester resin nanocomposites: Fabrication, characterization and property analysis. <i>Composites Science and Technology</i> , 2007 , 67, 2036-2044	8.6	115

43	Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. <i>Nanotechnology</i> , 2007 , 18, 335704	3.4	55
42	Giant magnetoresistance behavior of an iron/carbonized polyurethane nanocomposite. <i>Applied Physics Letters</i> , 2007 , 90, 053111	3.4	74
41	Magnetoresistance and Annealing Behaviors of Particulate CoAu Nanocomposites. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, E31		31
40	An investigation on granular-nanocomposite-based giant magnetoresistance (GMR) sensor fabrication 2007 ,		2
39	Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites. <i>Journal of Materials Chemistry</i> , 2007 , 17, 806-813		103
38	The performance of thin-film Li-ion batteries under flexural deflection. <i>Journal of Micromechanics and Microengineering</i> , 2006 , 16, 2714-2721	2	27
37	An Examination of Co and Fe Core Nanoparticles with a Protecting Shell. ECS Transactions, 2006, 1, 63-	69 <u>r</u>	2
36	CoFe, Fe and Co Nanoparticle Displacement with Cu Ions. ECS Transactions, 2006, 3, 337-345	1	9
35	Heat Transport in Graphite Nanoplatelet (GNP)-Reinforced Polymeric Nanocomposites and Aluminum Oxide Nanofluids 2006 ,		1
34	Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2800		310
33	Synthesis of poly(methyl methacrylate) stabilized colloidal zero-valence metallic nanoparticles. Journal of Materials Chemistry, 2006 , 16, 1772-1777		120
32	Displacement Synthesis of Cu Shells Surrounding Co Nanoparticles. <i>Journal of the Electrochemical Society</i> , 2005 , 152, D1	3.9	44
31	Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. <i>Langmuir</i> , 2005 , 21, 2042-50	4	312
30	An overview of high-performance phthalonitrile resins: fabrication and electronic applications. <i>Journal of Materials Chemistry C</i> ,	7.1	1
29	Effects of rare earth neodymium (Nd) and heat treatment on anti-corrosion behaviors of the AZ80 magnesium alloy. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	1
28	Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	3
27	Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	10
26	Hydrothermally synthesized ZnO-reduced graphene oxide nanocomposite for enhanced anticorrosion performance of waterborne epoxy coating. <i>Journal of Nanostructure in Chemistry</i> ,1	7.6	1

25	Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithiumBxygen batteries. <i>Inorganic Chemistry Frontiers</i> ,	6.8	10
24	Aqueous flexible all-solid-state NiCo-Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	10
23	Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	53
22	Overview of renewable polysaccharide-based composites for biodegradable food packaging applications. <i>Green Chemistry</i> ,	10	6
21	Chitosan-coated-magnetite with Covalently Grafted Polystyrene Based Carbon Nanocomposites for Hexavalent Chromium Adsorption. <i>Engineered Science</i> ,1, 46-54	3.8	55
20	Visible light-driven photoelectrochemical enzyme biosensor based on reduced graphene oxide/titania for detection of glucose. <i>Journal of Nanostructure in Chemistry</i> ,1	7.6	3
19	Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	14
18	Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	60
17	Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	22
16	Flame Retardant Polypropylene Nanocomposites1-6		
15	Enhanced Hydrogen Evolution Reaction of Amorphous MoSx via Carbon Depositing of TiO2 Nanotube Arrays. <i>Catalysis Letters</i> ,1	2.8	0
14	Overview of Anion Exchange Membranes Based on Ring Opening Metathesis Polymerization (ROMP). <i>Polymer Reviews</i> ,1-25	14	6
13	In-situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater. <i>Angewandte Chemie</i> ,	3.6	O
12	Overview of electrocatalytic treatment of antibiotic pollutants in wastewater. <i>Catalysis Reviews - Science and Engineering</i> ,1-51	12.6	1
11	Modification of coconut shell activated carbon and purification of volatile organic waste gas		2
	acetone. Advanced Composites and Hybrid Materials,1	8.7	2
10		8.7	0
10	acetone. Advanced Composites and Hybrid Materials,1 Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries.	,	

LIST OF PUBLICATIONS

7	Janus phenolformaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	12
6	Physics-based Computational Method Predicting the Dielectric Properties of Polymer Nanocomposites. <i>Applied Composite Materials</i> ,1	2	
5	Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	1
4	Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	2
3	Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	9
2	Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	6
1	Anti-Freezing Self-Adhesive Self-Healing Degradable Touch Panel with Ultra-Stretchable Performance Based on Transparent Triboelectric Nanogenerators. Advanced Functional Materials, 22012	45.6	2