Karali Patra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7244615/publications.pdf

Version: 2024-02-01

236925 345221 1,732 91 25 36 citations h-index g-index papers 92 92 92 1277 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Inâ€plane actuation performance of graphene oxide filled VHB 4910 dielectric elastomer. Journal of Applied Polymer Science, 2022, 139, 51594.	2.6	13
2	Performance evaluation of tool coatings and nanofluid MQL on the micro-machinability of Ti-6Al-4V. Journal of Manufacturing Processes, 2022, 73, 595-610.	5.9	40
3	Analysis of Stretch-Dependent Capacitance and Its Effects on Energy Conversion of a Donut-Shaped Dielectric Elastomer Generator. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	2
4	Novel tool design to tailor debris migration and tool wear mechanism in micro-slot grinding. Wear, 2022, 494-495, 204240.	3.1	2
5	Enhancement of micro milling performance by abrasion-resistant coated tools with optimized thin-film thickness: analytical and experimental characterization. International Journal of Advanced Manufacturing Technology, 2022, 120, 2993-3015.	3.0	11
6	Review on cryogenic assisted micro-machining of soft polymer: An emphasis on molecular physics, chamber design, performance analysis and sustainability. Journal of Manufacturing Processes, 2022, 80, 930-957.	5.9	7
7	Silicone composites cured under a high electric field: an electromechanical experimental study. Polymer Composites, 2021, 42, 914-930.	4.6	18
8	Proposal of a generic constitutive model for deformation-dependent dielectric constant of dielectric elastomers. Engineering Science and Technology, an International Journal, 2021, 24, 1347-1360.	3.2	8
9	Enhancement of electromechanical properties of natural rubber by adding barium titanate filler: An electroâ€mechanical study. Journal of Applied Polymer Science, 2021, 138, 50991.	2.6	16
10	Cumulative reduction of friction and size effects in micro milling through proper selection of coating thickness of TiAlN coated tool: Experimental and analytical assessments. Journal of Manufacturing Processes, 2021, 67, 635-654.	5.9	23
11	CRACK PROPAGATION BEHAVIOR OF LATERALLY CONSTRAINED POLYMERS USED AS DIELECTRIC ELASTOMERS. Rubber Chemistry and Technology, 2021, 94, 476-493.	1.2	11
12	Micro–nano surface texturing, characterization, and their impact on biointerfaces. , 2021, , 577-610.		6
13	Experimental study and phenomenological modelling of flaw sensitivity of two polymers used as dielectric elastomers. Continuum Mechanics and Thermodynamics, 2020, 32, 489-500.	2.2	12
14	Influences of TiAlN coating and limiting angles of flutes on prediction of cutting forces and dynamic stability in micro milling of die steel (P-20). Journal of Materials Processing Technology, 2020, 278, 116500.	6.3	47
15	Raman spectroscopy of pre-strained VHB 4910 elastomer towards actuator application. Vibrational Spectroscopy, 2020, 106, 102994.	2.2	1
16	Polyvinylidene Fluoride/Hydrogenated Nitrile Rubber-Based Flexible Electroactive Polymer Blend and Its Nanocomposites with Improved Actuated Strain: Characterization and Analysis of Electrostrictive Behavior. Industrial & Degraphic Engineering Chemistry Research, 2020, 59, 3413-3424.	3.7	6
17	High-Accuracy 3D Optical Profilometry for Analysis of Surface Condition of Modern Circulated Coins. Materials, 2020, 13, 5371.	2.9	8
18	A Study on the Machinability of Steels and Alloys to Develop Recommendations for Setting Tool Performance Characteristics and Belt Grinding Modes. Materials, 2020, 13, 3978.	2.9	8

#	Article	IF	CITATIONS
19	Tribological performances of symmetrically micro-textured Ti-6Al-4V alloy for hip joint. International Journal of Mechanical Sciences, 2020, 182, 105736.	6.7	15
20	A Controlled Conditioning Interface Unit for Dielectric Elastomer Generator. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5620-5628.	4.7	3
21	Monitoring of hole surface integrity in drilling of bi-directional woven carbon fiber reinforced plastic composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 2432-2458.	2.1	17
22	Determination of minimum uncut chip thickness and size effects in micro-milling of P-20 die steel using surface quality and process signal parameters. International Journal of Advanced Manufacturing Technology, 2020, 106, 4675-4691.	3.0	43
23	On stability analysis for micro milling of P-20 steel: Enhancement through application of TiAlN coated WC tool. Materials Today: Proceedings, 2020, 28, 856-859.	1.8	4
24	Combined effects of tool surface texturing, cutting parameters and minimum quantity lubrication (MQL) pressure on micro-grinding of BK7 glass. Journal of Manufacturing Processes, 2020, 54, 374-392.	5.9	25
25	Evolution of chemo-mechanical effects during single grit diamond scratching of monocrystalline silicon in the presence of potassium hydroxide. Wear, 2020, 452-453, 203292.	3.1	2
26	Modeling Dynamic Stability and Cutting Forces in Micro Milling of Ti6Al4V Using Intermittent Oblique Cutting Finite Element Method Simulation-Based Force Coefficients. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, .	2.2	21
27	Artificial Intelligence-Based Hole Quality Prediction in Micro-Drilling Using Multiple Sensors. Sensors, 2020, 20, 885.	3.8	48
28	Energy Harvesting from Knee Motion Using Dielectric Elastomer Generator. Smart Innovation, Systems and Technologies, 2020, , 1261-1272.	0.6	1
29	Influences of Feed Rate and Machining Length in Micro-milling of P-20 Steel. Lecture Notes in Mechanical Engineering, 2020, , 119-125.	0.4	0
30	Fracture toughness, hysteresis and stretchability of dielectric elastomers under equibiaxial and biaxial loading. Polymer Testing, 2019, 79, 106038.	4.8	27
31	Barium titanate particle filled silicone elastomer composite: Preparation and evaluation of morphology and mechanical behaviour. Journal of Physics: Conference Series, 2019, 1240, 012049.	0.4	10
32	A comprehensive review of micro-grinding: emphasis on toolings, performance analysis, modeling techniques, and future research directions. International Journal of Advanced Manufacturing Technology, 2019, 104, 63-102.	3.0	30
33	Effects of electric discharge dressing parameters on polycrystalline diamond micro-tool surface topography and their micro-grinding performances. International Journal of Refractory Metals and Hard Materials, 2019, 82, 297-309.	3.8	13
34	Effects of crosslink density on the behavior of VHB 4910 dielectric elastomer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 821-829.	2.2	10
35	Experimental and theoretical analysis of laterally pre-stretched pure shear deformation of dielectric elastomer. Polymer Testing, 2019, 75, 291-297.	4.8	20
36	Parametric optimization and process capability analysis for machining of nickel-based superalloy. International Journal of Advanced Manufacturing Technology, 2019, 102, 3995-4009.	3.0	98

#	Article	IF	Citations
37	Obtaining Various Shapes of Machined Surface Using a Tool with a Multi-Insert Cutting Edge. Applied Sciences (Switzerland), 2019, 9, 880.	2.5	10
38	Experimental analysis of ductile-brittle transitions for parallel and intersecting micro-slot grinding in BK-7 glass. Ceramics International, 2019, 45, 11013-11026.	4.8	22
39	On-machine texturing of PCD micro-tools for dry micro-slot grinding of BK7 glass. Precision Engineering, 2019, 55, 491-502.	3.4	28
40	Analysis of the Deviation in a Low-Cost System for Stepless Digital Control of Conventional Lathe Spindle Speeds. Applied Sciences (Switzerland), 2019, 9, 12.	2.5	11
41	Effects of uniaxial and biaxial strain on molecular structure of VHB 4910 dielectric elastomer. AIP Conference Proceedings, 2019, , .	0.4	2
42	Mechanistic modeling of cutting forces in micro-end-milling considering tool run out, minimum chip thickness and tooth overlapping effects. Machining Science and Technology, 2019, 23, 407-430.	2.5	31
43	A hybrid modelling approach towards prediction of cutting forces in micro end milling of Ti-6Al-4V titanium alloy. International Journal of Mechanical Sciences, 2019, 150, 495-509.	6.7	62
44	Effect of Water and KOH Aqueous Solution on Micro-slot Grinding of Silicon. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 61-70.	0.6	0
45	Micro ball-end milling—an emerging manufacturing technology for micro-feature patterns. International Journal of Advanced Manufacturing Technology, 2018, 94, 2821-2845.	3.0	28
46	Cutting force and hole quality analysis in micro-drilling of CFRP. Materials and Manufacturing Processes, 2018, 33, 1369-1377.	4.7	32
47	Size effects in Micro End-Milling of Hardened P-20 Steel. Materials Today: Proceedings, 2018, 5, 23726-23732.	1.8	10
48	Dependence of Actuation Strain of Dielectric Elastomer on Equi-biaxial, Pure Shear and Uniaxial Modes of Pre-stretching. IOP Conference Series: Materials Science and Engineering, 2018, 310, 012104.	0.6	10
49	Direction dependent dynamic wetting of semi-hemispherical end micro-groove textured Ti-6Al-4V surface. Surface and Coatings Technology, 2018, 356, 138-149.	4.8	11
50	Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances. Surface and Coatings Technology, 2018, 349, 71-81.	4.8	61
51	Fabrication of micro-textured surfaces using ball-end micromilling for wettability enhancement of Ti-6Al-4V. Journal of Materials Processing Technology, 2018, 262, 168-181.	6.3	32
52	Comparison of circuits for dielectric elastomer based energy harvesting. , 2018, , .		4
53	Finite Element Method Based Modeling for Prediction of Cutting Forces in Micro-end Milling. Journal of the Institution of Engineers (India): Series C, 2017, 98, 17-26.	1.2	11
54	Mechanistic modeling of micro-drilling cutting forces. International Journal of Advanced Manufacturing Technology, 2017, 88, 241-254.	3.0	27

#	Article	IF	Citations
55	Modeling and analysis of temperature distribution in the multilayer metal composite structures in grinding. International Journal of Advanced Manufacturing Technology, 2017, 91, 4055-4068.	3.0	13
56	A study of the influence of processing parameters and tool wear on elastic displacements of the technological system under face milling. International Journal of Advanced Manufacturing Technology, 2017, 92, 4473-4486.	3.0	28
57	Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals. Precision Engineering, 2017, 48, 279-291.	3.4	77
58	Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates. CIRP Journal of Manufacturing Science and Technology, 2017, 16, 55-63.	4.5	56
59	The Effect of Micro Molecular Parameters on the Actuation Performance of Electro Active Polymers., 2017,,.		3
60	Enhancing Performances of Micro-Grinding of BK-7 Glass through Modification of PCD Micro-Tool. Procedia Engineering, 2017, 206, 1365-1370.	1.2	5
61	Tool condition monitoring in micro-drilling using vibration signals and artificial neural network: Subtitle: TCM in micro-drilling using vibration signals. , 2017, , .		7
62	An effective and affordable technique for human motion capturing and teleoperation of a humanoid robot using an exoskeleton. , $2017, \dots$		5
63	Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications. Proceedings of SPIE, $2016, , .$	0.8	4
64	Manufacturing Miniature Products by Micro-grinding: A Review. Procedia Engineering, 2016, 150, 969-974.	1.2	30
65	Estimation and validation of maxwell stress of planar dielectric elastomer actuators. Journal of Mechanical Science and Technology, 2016, 30, 429-436.	1.5	18
66	Rate-dependent mechanical behavior of VHB 4910 elastomer. Mechanics of Advanced Materials and Structures, 2016, 23, 170-179.	2.6	44
67	Dynamic Model of Material Deforming Under Microgrinding. Procedia Engineering, 2015, 129, 127-133.	1.2	6
68	Experimental Analysis of Cutting Forces in Microdrilling of Austenitic Stainless Steel (X5CrNi18-10). Materials and Manufacturing Processes, 2015, 30, 248-255.	4.7	27
69	Externally powered upper limb prostheses. , 2015, , .		0
70	Application of Artificial neural network and wavelet packet transform for vibration signal based monitoring in mechanical micro drilling. , 2015, , .		0
71	Modeling Cutting Force in Micro-Milling of Ti-6Al-4V Titanium Alloy. Procedia Engineering, 2015, 129, 134-139.	1.2	39
72	Experimental Study and Numerical Modelling of Creep and Stress Relaxation of Dielectric Elastomers. Strain, 2015, 51, 43-54.	2.4	39

#	Article	IF	Citations
73	A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. International Journal of Mechanics and Materials in Design, 2015, 11, 79-90.	3.0	47
74	Obstacle avoidance for mobile robot navigation in unknown environment using geometrical information of mobile camera images. International Journal of Computational Vision and Robotics, 2014, 4, 39.	0.3	3
75	Evaluation of area strain response of dielectric elastomer actuator using image processing technique. , 2014, , .		3
76	Size effects in micro drilling of carbon fiber reinforced plastic composite. Production Engineering, 2014, 8, 301-307.	2.3	48
77	Characterisation of Tensile Behaviour of a Dielectric Elastomer at Large Deformation. Journal of the Institution of Engineers (India): Series C, 2014, 95, 207-212.	1.2	6
78	Modeling and Simulation of Mechanical Micro-Machiningâ€"A Review. Machining Science and Technology, 2014, 18, 323-347.	2.5	53
79	Particle swarm optimization of a neural network model in a machining process. Sadhana - Academy Proceedings in Engineering Sciences, 2014, 39, 533-548.	1.3	23
80	Dissipation Factor of Acrylic Dielectric Elastomerâ€"An Experimental Study. Journal of Nanoscience and Nanotechnology, 2014, 14, 7439-7444.	0.9	10
81	Estimation of Elastic Modulus of Dielectric Elastomer Materials Using Mooney-Rivlin and Ogden Models. Advanced Materials Research, 2013, 685, 331-335.	0.3	8
82	Strategies for intelligent drill wear prediction using multiple sensor signals. International Journal of Mechatronics and Manufacturing Systems, 2013, 6, 493.	0.1	2
83	Genetically evolved radial basis function network based prediction of drill flank wear. Engineering Applications of Artificial Intelligence, 2010, 23, 1112-1120.	8.1	12
84	FUZZY RADIAL BASIS FUNCTION (FRBF) NETWORK BASED TOOL CONDITION MONITORING SYSTEM USING VIBRATION SIGNALS. Machining Science and Technology, 2010, 14, 280-300.	2.5	15
85	Neural network based prediction of drill wear from theoretically analysed and experimentally measured values of thrust force and torque. International Journal of Machining and Machinability of Materials, 2009, 5, 207.	0.1	1
86	Application of wavelet packet transform based Normalised Radial Basis Function Network in a machining process. International Journal of Materials and Product Technology, 2009, 35, 184.	0.2	2
87	Effect of different basis functions on a radial basis function network in prediction of drill flank wear from motor current signals. Soft Computing, 2008, 12, 777-787.	3.6	15
88	Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing Journal, 2007, 7, 929-935.	7.2	55
89	Drill Wear Monitoring through Current Signature Analysis using Wavelet Packet Transform and Artificial Neural Network. , 2006, , .		2
90	Experimental Investigation of Tool Breakage in Micro Drilling of EN AW-5083 Aluminium. Key Engineering Materials, 0, 581, 119-124.	0.4	5

#	Article	IF	CITATIONS
91	Extracting Specific Cutting Force Coefficients in Micro Drilling with Tool Edge Radius Effects . Applied Mechanics and Materials, 0, 799-800, 256-260.	0.2	2