Chengshuai Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7244496/publications.pdf

Version: 2024-02-01

53751 85498 6,110 147 45 71 citations h-index g-index papers 149 149 149 6443 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors and Bioelectronics, 2009, 24, 2825-2829.	5.3	268
2	Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Science of the Total Environment, 2012, 416, 507-512.	3.9	247
3	Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 2016, 209, 38-45.	3.7	247
4	Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite. Chemosphere, 2012, 89, 1009-1014.	4.2	173
5	Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biology and Biochemistry, 2014, 70, 142-150.	4.2	170
6	Iron Redox Cycling Coupled to Transformation and Immobilization of Heavy Metals: Implications for Paddy Rice Safety in the Red Soil of South China. Advances in Agronomy, 2016, 137, 279-317.	2.4	137
7	Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink?. Environmental Pollution, 2015, 199, 95-101.	3.7	131
8	The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes and Pigments, 2008, 76, 477-484.	2.0	129
9	Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina. Journal of Soils and Sediments, 2012, 12, 724-733.	1.5	127
10	Fe ²⁺ /HClO Reaction Produces Fe ^{IV} O ²⁺ : An Enhanced Advanced Oxidation Process. Environmental Science & Environmental Sc	4.6	121
11	Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Separation and Purification Technology, 2012, 91, 46-51.	3.9	105
12	Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. Biosensors and Bioelectronics, 2009, 24, 3652-3656.	5.3	104
13	Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase. Journal of Hazardous Materials, 2009, 162, 716-723.	6.5	101
14	Status of lead accumulation in agricultural soils across China (1979–2016). Environment International, 2019, 129, 35-41.	4.8	100
15	Iron Atom Exchange between Hematite and Aqueous Fe(II). Environmental Science & Eamp; Technology, 2015, 49, 8479-8486.	4.6	99
16	Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation. Journal of Hazardous Materials, 2007, 149, 199-207.	6.5	94
17	Fe(II)-induced phase transformation of ferrihydrite: The inhibition effects and stabilization of divalent metal cations. Chemical Geology, 2016, 444, 110-119.	1.4	91
18	Heterogeneous Photodegradation of Pentachlorophenol with Maghemite and Oxalate under UV Illumination. Environmental Science &	4.6	85

#	Article	IF	CITATIONS
19	Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environmental Pollution, 2020, 264, 114745.	3.7	85
20	The oxidative transformation of sodium arsenite at the interface of \hat{l}_{\pm} -MnO2 and water. Journal of Hazardous Materials, 2010, 173, 675-681.	6.5	82
21	The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole. Journal of Molecular Catalysis A, 2006, 252, 40-48.	4.8	81
22	Mineralization Behavior of Fluorine in Perfluorooctanesulfonate (PFOS) during Thermal Treatment of Lime-Conditioned Sludge. Environmental Science & Environmental Science & 2013, 47, 2621-2627.	4.6	73
23	The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-TiO2 suspension. Journal of Hazardous Materials, 2006, 138, 471-478.	6.5	72
24	Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species. Water Research, 2018, 143, 599-607.	5.3	71
25	Photodegradation of orange I in the heterogeneous iron oxide–oxalate complex system under UVA irradiation. Journal of Hazardous Materials, 2006, 137, 1016-1024.	6.5	70
26	Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide–water interface. Journal of Colloid and Interface Science, 2008, 321, 332-341.	5.0	70
27	Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd). Chemosphere, 2019, 236, 124841.	4.2	69
28	Photodegradation of 2-mercaptobenzothiazole in the \hat{I}^3 -Fe2O3/oxalate suspension under UVA light irradiation. Journal of Hazardous Materials, 2008, 153, 426-433.	6.5	68
29	Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: Possible mechanisms and environmental implications. Science of the Total Environment, 2019, 649, 535-543.	3.9	68
30	Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination. Journal of Hazardous Materials, 2010, 174, 64-70.	6.5	62
31	Biostimulation of Indigenous Microbial Communities for Anaerobic Transformation of Pentachlorophenol in Paddy Soils of Southern China. Journal of Agricultural and Food Chemistry, 2012, 60, 2967-2975.	2.4	62
32	Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Science of the Total Environment, 2021, 762, 143059.	3.9	60
33	Highly Sensitive Aptasensor for Trace Arsenic(III) Detection Using DNAzyme as the Biocatalytic Amplifier. Analytical Chemistry, 2019, 91, 1724-1727.	3.2	57
34	Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability. Journal of Hazardous Materials, 2016, 311, 246-253.	6.5	55
35	Effect of Oxalate on Photodegradation of Bisphenol A at the Interface of Different Iron Oxides. Industrial & Different Iron Oxides.	1.8	54
36	Dependence of Sulfadiazine Oxidative Degradation on Physicochemical Properties of Manganese Dioxides. Industrial & Engineering Chemistry Research, 2009, 48, 10408-10413.	1.8	53

#	Article	IF	Citations
37	Coincorporation of N and S into Zero-Valent Iron to Enhance TCE Dechlorination: Kinetics, Electron Efficiency, and Dechlorination Capacity. Environmental Science & Enp.; Technology, 2021, 55, 16088-16098.	4.6	53
38	Conduction Band of Hematite Can Mediate Cytochrome Reduction by Fe(II) under Dark and Anoxic Conditions. Environmental Science & Environmental Science	4.6	52
39	Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic. Journal of Hazardous Materials, 2017, 321, 449-455.	6.5	51
40	Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides. Geochimica Et Cosmochimica Acta, 2018, 237, 205-222.	1.6	50
41	FeN <i>_X</i> (C)-Coated Microscale Zero-Valent Iron for Fast and Stable Trichloroethylene Dechlorination in both Acidic and Basic pH Conditions. Environmental Science & Environmental Scienc	4.6	49
42	Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms. Applied Catalysis B: Environmental, 2021, 297, 120446.	10.8	48
43	The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension. Chemical Engineering Journal, 2009, 147, 219-225.	6.6	47
44	Anaerobic Transformation of DDT Related to Iron(III) Reduction and Microbial Community Structure in Paddy Soils. Journal of Agricultural and Food Chemistry, 2013, 61, 2224-2233.	2.4	47
45	A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device. Talanta, 2019, 198, 412-416.	2.9	47
46	The oxidative degradation of 2-mercaptobenzothiazole at the interface of \hat{l}^2 -MnO2 and water. Journal of Hazardous Materials, 2008, 154, 1098-1105.	6.5	46
47	Versatile Sensing Platform for Cd ²⁺ Detection in Rice Samples and Its Applications in Logic Gate Computation. Analytical Chemistry, 2020, 92, 6173-6180.	3.2	46
48	Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochimica, 2016, 35, 329-339.	0.7	45
49	Oxidative decomposition of perfluorooctanesulfonate in water by permanganate. Separation and Purification Technology, 2012, 87, 95-100.	3.9	44
50	Biological Fe(II) and As(III) oxidation immobilizes arsenic in micro-oxic environments. Geochimica Et Cosmochimica Acta, 2019, 265, 96-108.	1.6	44
51	A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin B1 using G-quadruplex as the signal reporter. Food Chemistry, 2019, 298, 125034.	4.2	44
52	The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO3â^2. Science of the Total Environment, 2019, 650, 633-641.	3.9	43
53	Contamination, oral bioaccessibility and human health risk assessment of thallium and other metal(loid)s in farmland soils around a historic Tl Hg mining area. Science of the Total Environment, 2021, 758, 143577.	3.9	42
54	Mitigation of soil acidification through changes in soil mineralogy due to long-term fertilization in southern China. Catena, 2019, 174, 227-234.	2.2	40

#	Article	IF	Citations
55	The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. Journal of Hazardous Materials, 2015, 298, 252-260.	6.5	39
56	Cu ₂ O-promoted degradation of sulfamethoxazole by $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Fe ₂ O ₃ -catalyzed peroxymonosulfate under circumneutral conditions: synergistic effect, Cu/Fe ratios, and mechanisms. Environmental Technology (United Kingdom), 2018, 39, 1-11.	1.2	39
57	Soil microbial biomass and community responses to experimental precipitation change: A meta-analysis. Soil Ecology Letters, 2020, 2, 93-103.	2.4	36
58	Extraction of Metallic Lead from Cathode Ray Tube (CRT) Funnel Glass by Thermal Reduction with Metallic Iron. Environmental Science & Environmental Sc	4.6	35
59	Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models. Environmental Pollution, 2018, 233, 880-888.	3.7	35
60	Reductive transformation of pentachlorophenol on the interface of subtropical soil colloids and water. Geoderma, 2008, 148, 70-78.	2.3	34
61	Effect of pH on pentachlorophenol degradation in irradiated iron/oxalate systems. Chemical Engineering Journal, 2011, 168, 1209-1216.	6.6	34
62	Zinc isotope revealing zinc's sources and transport processes in karst region. Science of the Total Environment, 2020, 724, 138191.	3.9	34
63	A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil. Chemosphere, 2016, 160, 141-148.	4.2	33
64	Cd2+ adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox. Environmental Pollution, 2019, 244, 783-791.	3.7	33
65	Influence of calcium hydroxide on the fate of perfluorooctanesulfonate under thermal conditions. Journal of Hazardous Materials, 2011, 192, 1067-1071.	6.5	32
66	Highâ€precision magnesium isotope analysis of geological and environmental reference materials by multipleâ€collector inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 767-777.	0.7	31
67	Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202063.	1.2	31
68	Synergistic oxidation of dissolved As(III) and arsenopyrite in the presence of oxygen: Formation and function of reactive oxygen species. Water Research, 2021, 202, 117416.	5.3	30
69	Effect of iron oxides and carboxylic acids on photochemical degradation of bisphenol A. Biology and Fertility of Soils, 2006, 42, 409-417.	2.3	29
70	Catalytic degradation of phenol in sonolysis by coal ash and H2O2/O3. Chemical Engineering Journal, 2009, 153, 131-137.	6.6	29
71	Microaerophilic Oxidation of Fe(II) Coupled with Simultaneous Carbon Fixation and As(III) Oxidation and Sequestration in Karstic Paddy Soil. Environmental Science & Enp.; Technology, 2021, 55, 3634-3644.	4.6	29
72	Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area. Environmental Pollution, 2020, 267, 115616.	3.7	28

#	Article	IF	CITATIONS
73	Dynamics of the microbial community and Fe(III)-reducing and dechlorinating microorganisms in response to pentachlorophenol transformation in paddy soil. Journal of Hazardous Materials, 2016, 312, 97-105.	6.5	26
74	Electrochemical adsorption of cadmium and arsenic by natural Fe-Mn nodules. Journal of Hazardous Materials, 2020, 390, 122165.	6.5	26
75	Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems. Journal of Environmental Sciences, 2016, 45, 164-176.	3.2	25
76	Cubic and tetragonal ferrite crystal structures for copper ion immobilization in an iron-rich ceramic matrix. RSC Advances, 2016, 6, 28579-28585.	1.7	23
77	Effects of ionic radius on phase evolution in Ln-Al co-doped Ca1-xLnxZrTi2-xAlxO7 (Ln = La, Nd, Gd, Ho,) Tj ETQq1	1 _{2.3} 78431	4.ggBT /Ove
78	Photochemical Formation Process of Schwertmannite on Montmorillonite and Corresponding Cr(VI) Adsorption Capacity. ACS Earth and Space Chemistry, 2019, 3, 718-727.	1.2	23
79	Relationship between oxidative degradation of 2-mercaptobenzothiazole and physicochemical properties of manganese (hydro)oxides. Environmental Chemistry, 2009, 6, 83.	0.7	22
80	Phytoextraction of Pb and Cu Contaminated Soil With Maize and Microencapsulated EDTA. International Journal of Phytoremediation, 2012, 14, 727-740.	1.7	22
81	Profiles, sources, and transport of polycyclic aromatic hydrocarbons in soils affected by electronic waste recycling in Longtang, south China. Environmental Monitoring and Assessment, 2014, 186, 3351-3364.	1.3	22
82	A cascade toehold-mediated strand displacement strategy for label-free and sensitive non-enzymatic recycling amplification detection of the <i>HIV-1</i> gene. Analyst, The, 2019, 144, 2173-2178.	1.7	22
83	Aboveground litter inputs determine carbon storage across soil profiles: a meta-analysis. Plant and Soil, 2021, 462, 429-444.	1.8	22
84	Solar irradiation induced oxidation and adsorption of arsenite on natural pyrite. Water Research, 2021, 203, 117545.	5.3	22
85	Iron Reduction Coupled to Reductive Dechlorination in Red Soil. Soil Science, 2014, 179, 457-467.	0.9	20
86	Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium. Journal of Environmental Management, 2018, 217, 747-753.	3.8	20
87	The oxidative degradation of sulfadiazine at the interface of αâ€MnO ₂ and water. Journal of Chemical Technology and Biotechnology, 2009, 84, 1848-1853.	1.6	19
88	Effects of Mn(II) on the Oxidation of Fe in Soils and the Uptake of Cadmium by Rice (Oryza sativa). Water, Air, and Soil Pollution, 2019, 230, 1 .	1,1	19
89	Unraveling the Structure of the Poly(triazine imide)/LiCl Photocatalyst: Cooperation of Facile Syntheses and a Low-Temperature Synchrotron Approach. Inorganic Chemistry, 2019, 58, 15880-15888.	1.9	19
90	Arsenic detoxification by iron-manganese nodules under electrochemically controlled redox: Mechanism and application. Journal of Hazardous Materials, 2021, 403, 123912.	6.5	19

#	Article	IF	CITATIONS
91	Enhanced reactivity and mechanisms of copper nanoparticles modified green rust for p-nitrophenol reduction. Environment International, 2019, 129, 299-307.	4.8	18
92	Evaluation on the stabilization of Zn/Ni/Cu in spinel forms: Low-cost red mud as an effective precursor. Environmental Pollution, 2019, 249, 144-151.	3.7	18
93	Anoxic oxidation of As(III) during Fe(II)-induced goethite recrystallization: Evidence and importance of Fe(IV) intermediate. Journal of Hazardous Materials, 2022, 421, 126806.	6.5	18
94	Effects of humic acid on pentachlorophenol biodegrading microorganisms elucidated by stable isotope probing and highâ€throughput sequencing approaches. European Journal of Soil Science, 2018, 69, 380-391.	1.8	17
95	Quantification of the Partitioning Ratio of Minor Actinide Surrogates between Zirconolite and Glass in Glass-Ceramic for Nuclear Waste Disposal. Inorganic Chemistry, 2017, 56, 9913-9921.	1.9	16
96	The effect of electron donors on the dechlorination of pentachlorophenol (PCP) and prokaryotic diversity in paddy soil. European Journal of Soil Biology, 2018, 86, 8-15.	1.4	16
97	Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Frontiers in Microbiology, 2021, 12, 665090.	1.5	16
98	Combined Quantitative X-ray Diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy Investigations of Crystal Evolution in CaOâ€"Al ₂ 6€"ZrO ₃ â€"SiO ₂ â€"TiO ₂ â€"ZrO ₂ â€"N System. Crystal Growth and Design, 2017, 17, 1079-1087.	ld _{2<!--</td--><td>sub¹⁵0₃</td>}	sub ¹⁵ 0 ₃
99	Isotopic fingerprints indicate distinct strategies of Fe uptake in rice. Chemical Geology, 2019, 524, 323-328.	1.4	15
100	Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes. Environmental Pollution, 2022, 297, 118818.	3.7	15
101	Flooding-drainage alternations impact mobilization and isotope fractionation of cadmium in soil-rice systems. Journal of Hazardous Materials, 2022, 436, 129048.	6.5	15
102	A target-induced and equipment-free biosensor for amplified visual detection of pesticide acetamiprid with high sensitivity and selectivity. Analytical Methods, 2019, 11, 1168-1173.	1.3	14
103	High-efficiency As(III) oxidation and electrocoagulation removal using hematite with a chargeâ°'discharge technique. Science of the Total Environment, 2020, 703, 135678.	3.9	14
104	A novel removal strategy for copper and arsenic by photooxidation coupled with coprecipitation: Performance and mechanism. Chemical Engineering Journal, 2020, 401, 126102.	6.6	14
105	Aqueous Fe(II)-Induced Phase Transformation of Ferrihydrite Coupled Adsorption/Immobilization of Rare Earth Elements. Minerals (Basel, Switzerland), 2018, 8, 357.	0.8	13
106	Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite. Journal of Hazardous Materials, 2022, 433, 128716.	6.5	13
107	Kinetics and mechanism of propachlor reductive transformation through nucleophilic substitution by dithionite. Chemosphere, 2011, 85, 1438-1443.	4.2	12
108	Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization. Minerals (Basel, Switzerland), 2018, 8, 367.	0.8	12

#	Article	IF	CITATIONS
109	Effects of Rare Earth Elements' Physicochemical Properties on Their Stabilization during the Fe(II)aq-induced Phase Transformation of Ferrihydrite. ACS Earth and Space Chemistry, 2019, 3, 895-904.	1.2	12
110	Effects of Fe(II)-induced transformation of scorodite on arsenic solubility. Journal of Hazardous Materials, 2022, 429, 128274.	6.5	12
111	Tetracycline-Induced Release and Oxidation of As(III) Coupled with Concomitant Ferrihydrite Transformation. Environmental Science & Echnology, 2022, 56, 9453-9462.	4.6	12
112	Synergistic effects of Ln and Fe Co-Doping on phase evolution of Ca1-Ln ZrTi2-Fe O7 (LnÂ= La, Nd, Gd, Ho,) Tj E	TQq0 ₃ 0 0 ı	gBT/Overlocl
113	Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. Chemosphere, 2020, 247, 125822.	4.2	11
114	Microbial community response to the toxic effect of pentachlorophenol in paddy soil amended with an electron donor and shuttle. Ecotoxicology and Environmental Safety, 2020, 205, 111328.	2.9	11
115	Adsorption and Stabilization of Lead during Fe(II)-catalyzed Phase Transformation of Ferrihydrite. Acta Chimica Sinica, 2017, 75, 621.	0.5	11
116	Effect of oxalate and pH on photodegradation of pentachlorophenol in heterogeneous irradiated maghemite System. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328, 198-206.	2.0	10
117	Changes in the microbial community during repeated anaerobic microbial dechlorination of pentachlorophenol. Biodegradation, 2017, 28, 219-230.	1.5	10
118	Fe(II)-induced transformation of iron minerals in soil ferromanganese nodules. Chemical Geology, 2021, 559, 119901.	1.4	10
119	Adsorption of cadmium on clay-organic associations in different pH solutions: The effect of amphoteric organic matter. Ecotoxicology and Environmental Safety, 2022, 236, 113509.	2.9	10
120	Lithologic controls on the mobility of Cd in mining-impacted watersheds revealed by stable Cd isotopes. Water Research, 2022, 220, 118619.	5. 3	10
121	Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil. Environmental Geochemistry and Health, 2021, 43, 1305-1317.	1.8	9
122	Arsenic release from microbial reduction of scorodite in the presence of electron shuttle in flooded soil. Journal of Environmental Sciences, 2023, 126, 113-122.	3.2	9
123	Synthesis and Characterization of Ethylenediamine Tetraacetic Acid Tetrasodium Salt Loaded in Microcapsules with Slow Release Properties. Chinese Journal of Chemical Engineering, 2010, 18, 149-155.	1.7	8
124	Correlations between soil geochemical properties and Fe(III) reduction suggest microbial reducibility of iron in different soils from Southern China. Catena, 2014, 123, 176-187.	2.2	8
125	Combined modification of clay with sulfhydryl and iron: Toxicity alleviation in Cr-contaminated soils for mustard (Brassica juncea) growth. Journal of Geochemical Exploration, 2017, 176, 2-8.	1.5	8
126	Effective Zinc Adsorption Driven by Electrochemical Redox Reactions of Birnessite Nanosheets Generated by Solar Photochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13907-13914.	3.2	8

#	Article	IF	Citations
127	Effects of Environmental Fe Concentrations on Formation and Evolution of Allophane in Alâ€Siâ€Fe Systems: Implications for Both Earth and Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006590.	1.5	8
128	Facet-specific reactivity of hematite nanocrystals during Fe(II)-catalyzed recrystallization. Chemical Geology, 2021, 583, 120460.	1.4	8
129	Detoxification of Arsenite through Adsorption and Oxidative Transformation on Pyrolusite. Clean - Soil, Air, Water, 2012, 40, 1265-1272.	0.7	7
130	Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions. Journal of Environmental Management, 2022, 317, 115425.	3.8	7
131	Pyrosequencing revealed highly microbial phylogenetic diversity in ferromanganese nodules from farmland. Environmental Sciences: Processes and Impacts, 2015, 17, 213-224.	1.7	6
132	Immobilization of Lead in Cathode Ray Tube Funnel Glass with Beneficial Use of Red Mud for Potential Application in Ceramic Industry. ACS Sustainable Chemistry and Engineering, 2018, 6, 14213-14220.	3.2	6
133	Cadmium isotope compositions of Fe-Mn nodules and surrounding soils: Implications for tracing Cd sources. Fundamental Research, 2021, 1, 269-276.	1.6	6
134	Beneficial metal stabilization mechanisms using simulated sludge incineration ash for ceramic products. Journal of Chemical Technology and Biotechnology, 2014, 89, 536-543.	1.6	5
135	Stabilization of Cd 2+ /Cr 3+ During Aqueous Fe(II)â€Induced Recrystallization of Alâ€Substituted Goethite. Soil Science Society of America Journal, 2019, 83, 483-491.	1.2	5
136	Simultaneous Immobilization of Zn(II) and Cr(III) in Spinel Crystals from Beneficial Utilization of Waste Brownfield-Site Soils. Clays and Clay Minerals, 2019, 67, 315-324.	0.6	5
137	Enrichment and environmental availability of cadmium in agricultural soils developed on Cd-rich black shale in southwestern China. Environmental Science and Pollution Research, 2022, 29, 36243-36254.	2.7	5
138	Source and Strategy of Iron Uptake by Rice Grown in Flooded and Drained Soils: Insights from Fe Isotope Fractionation and Gene Expression. Journal of Agricultural and Food Chemistry, 2022, 70, 2564-2573.	2.4	5
139	Potential to Reduce Chemical Fertilizer Application in Tea Plantations at Various Spatial Scales. International Journal of Environmental Research and Public Health, 2022, 19, 5243.	1.2	5
140	Heterogeneous Nucleophilic Transformation of Metolachlor by Bisulfide on Alumina Surface. Clean - Soil, Air, Water, 2013, 41, 856-864.	0.7	4
141	Biochar Addition Enhances Phenanthrene Fixation in Sediment. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 163-168.	1.3	4
142	Environmental quality and its impact on the local economy: A case study from Dongguan, South China. International Journal of Sustainable Development and World Ecology, 2005, 12, 291-299.	3.2	2
143	Influence of geochemical properties and land-use types on the microbial reduction of Fe(iii) in subtropical soils. Environmental Sciences: Processes and Impacts, 2014, 16, 1938-1947.	1.7	2
144	Iron solid-phase differentiation controls isotopic fractionation during lateritic weathering of basalt. Catena, 2022, 217, 106512.	2.2	2

#	Article	IF	CITATIONS
145	Two-step calculation method to enable the ecological and human health risk assessment of remediated soil treated through thermal curing. Soil Ecology Letters, 2021, 3, 266-278.	2.4	1
146	Improved adsorption and desorption behavior of Cd on thiol-modified bentonite grafted with cysteamine hydrochloride. Research on Chemical Intermediates, 0, , .	1.3	1
147	Stabilized Nickel and Copper in a Ceramic Matrix and Their Leaching Behavior. , 2016, , .		O