
Evgenia Glukhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/724411/publications.pdf Version: 2024-02-01

EVCENIA CLUKHOV

#	Article	IF	CITATIONS
1	Structure and Candidate Biosynthetic Gene Cluster of a Manumycin-Type Metabolite from <i>Salinispora pacifica</i> . Journal of Natural Products, 2022, 85, 980-986.	1.5	1
2	On the Hunt for New Toxin Families Produced by a Mediterranean Strain of the Benthic Dinoflagellate Ostreopsis cf. ovata. Toxins, 2022, 14, 234.	1.5	4
3	Secondary Metabolite Variation and Bioactivities of Two Marine Aspergillus Strains in Static Co-Culture Investigated by Molecular Network Analysis and Multiple Database Mining Based on LC-PDA-MS/MS. Antibiotics, 2022, 11, 513.	1.5	12
4	A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Marine Drugs, 2021, 19, 20.	2.2	19
5	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
6	Total Synthesis of Laucysteinamide A, a Monomeric Congener of Somocystinamide A. Journal of Natural Products, 2021, 84, 865-870.	1.5	2
7	Pagoamide A, a Cyclic Depsipeptide Isolated from a Cultured Marine Chlorophyte, Derbesia sp., Using MS/MS-Based Molecular Networking. Journal of Natural Products, 2020, 83, 617-625.	1.5	22
8	Applying a Chemogeographic Strategy for Natural Product Discovery from the Marine Cyanobacterium Moorena bouillonii. Marine Drugs, 2020, 18, 515.	2.2	6
9	An anti-inflammatory isoflavone from soybean inoculated with a marine fungus Aspergillus terreus C23-3. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1546-1553.	0.6	6
10	A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. Journal of the American Chemical Society, 2020, 142, 4114-4120.	6.6	114
11	Tutuilamides A–C: Vinyl-Chloride-Containing Cyclodepsipeptides from Marine Cyanobacteria with Potent Elastase Inhibitory Properties. ACS Chemical Biology, 2020, 15, 751-757.	1.6	33
12	MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities. Cell Systems, 2019, 9, 600-608.e4.	2.9	46
13	Cytotoxic Microcolin Lipopeptides from the Marine Cyanobacterium <i>Moorea producens</i> . Journal of Natural Products, 2019, 82, 2608-2619.	1.5	23
14	Integrated Genomic and Metabolomic Approach to the Discovery of Potential Anti-Quorum Sensing Natural Products from Microbes Associated with Marine Samples from Singapore. Marine Drugs, 2019, 17, 72.	2.2	16
15	Exploration of the carmaphycins as payloads in antibody drug conjugate anticancer agents. European Journal of Medicinal Chemistry, 2019, 161, 416-432.	2.6	21
16	Samholides, Swinholide-Related Metabolites from a Marine Cyanobacterium cf. <i>Phormidium</i> sp Journal of Organic Chemistry, 2018, 83, 3034-3046.	1.7	12
17	Bastimolide B, an Antimalarial 24-Membered Marine Macrolide Possessing a <i>tert</i> -Butyl Group. Journal of Natural Products, 2018, 81, 211-215.	1.5	29
18	MS/MS-Based Molecular Networking Approach for the Detection of Aplysiatoxin-Related Compounds in Environmental Marine Cyanobacteria. Marine Drugs, 2018, 16, 505.	2.2	14

EVGENIA GLUKHOV

#	Article	IF	CITATIONS
19	The Metabolome of a Cyanobacterial Bloom Visualized by MS/MS-Based Molecular Networking Reveals New Neurotoxic Smenamide Analogs (C, D, and E). Frontiers in Chemistry, 2018, 6, 316.	1.8	21
20	Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria. Methods in Enzymology, 2018, 604, 3-43.	0.4	10
21	Novel Marine Compounds Modulate Mitochondrial Function in H9c2 Cells: Potential New Pharmaceutical Targets to Control Cardiac Metabolism. FASEB Journal, 2018, 32, .	0.2	Ο
22	Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus <i>Moorea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3198-3203.	3.3	77
23	Dudawalamides A–D, Antiparasitic Cyclic Depsipeptides from the Marine Cyanobacterium <i>Moorea producens</i> . Journal of Natural Products, 2017, 80, 1827-1836.	1.5	39
24	Discovery and Synthesis of Caracolamide A, an Ion Channel Modulating Dichlorovinylidene Containing Phenethylamide from a Panamanian Marine Cyanobacterium cf. <i>Symploca</i> Species. Journal of Natural Products, 2017, 80, 2328-2334.	1.5	13
25	Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. ELife, 2017, 6, .	2.8	33
26	A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB. BMC Microbiology, 2016, 16, 198.	1.3	13
27	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
28	Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 2015, 9, 218-226.	2.4	59
29	Combined LC–MS/MS and Molecular Networking Approach Reveals New Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle. Environmental Science & Technology, 2015, 49, 14301-14310.	4.6	55
30	Isolation of Polycavernoside D from a Marine Cyanobacterium. Environmental Science and Technology Letters, 2015, 2, 166-170.	3.9	22
31	Quantitative molecular networking to profile marine cyanobacterial metabolomes. Journal of Antibiotics, 2014, 67, 105-112.	1.0	58
32	Molecular Networking as a Dereplication Strategy. Journal of Natural Products, 2013, 76, 1686-1699.	1.5	475
33	Activity of novel non-amphipathic cationic antimicrobial peptides against Candida species. Journal of Antimicrobial Chemotherapy, 2006, 57, 899-907.	1.3	43
34	Basis for Selectivity of Cationic Antimicrobial Peptides for Bacterial Versus Mammalian Membranes. Journal of Biological Chemistry, 2005, 280, 33960-33967.	1.6	244
35	Discovery of pH-Selective Marine and Plant Natural Product Inhibitors of Cathepsin B Revealed by Screening at Acidic and Neutral pH Conditions. ACS Omega, 0, , .	1.6	2