Sam Emaminejad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7244089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Science Advances, 2022, 8, eabk0967.	4.7	118
2	A touch-based multimodal and cryptographic bio-human–machine interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201937119.	3.3	11
3	Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter, 2021, 4, 2886-2901.	5.0	59
4	Design Framework and Sensing System for Noninvasive Wearable Electroactive Drug Monitoring. ACS Sensors, 2020, 5, 265-273.	4.0	28
5	A Mediatorâ€Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring. Advanced Functional Materials, 2020, 30, 1908507.	7.8	36
6	Natural Perspiration Sampling and in Situ Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing. ACS Sensors, 2020, 5, 93-102.	4.0	69
7	Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics. Advanced Functional Materials, 2020, 30, 1906016.	7.8	55
8	An autonomous wearable system for diurnal sweat biomarker data acquisition. Lab on A Chip, 2020, 20, 4582-4591.	3.1	26
9	Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. Lab on A Chip, 2020, 20, 4205-4214.	3.1	27
10	Wearable Tactile Sensors: Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables (Adv.) Tj ETQq0 C	0 rgBT /O	verlock 10 Ti
11	Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19017-19025.	3.3	71
12	A Fouling-Resistant Voltammetric Sensing System for Wearable Electroactive Biomarker Monitoring. Journal of Microelectromechanical Systems, 2020, 29, 1059-1063.	1.7	4
13	An Adhesive and Corrosion-Resistant Biomarker Sensing Film for Biosmart Wearable Consumer Electronics. Journal of Microelectromechanical Systems, 2020, 29, 1112-1114.	1.7	2
14	A Stimuli-Responsive Hydrogel Array Fabrication Scheme for Large-Scale and Wearable Microfluidic Valving. Journal of Microelectromechanical Systems, 2020, 29, 1115-1117.	1.7	0
15	A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis. Nature Communications, 2020, 11, 4405.	5.8	92
16	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materials, 2020, 30, 2003601.	7.8	112

17An Autonomous Diurnal Sweat Sampling Patch for Biomarker Data Analytics. Journal of Microelectromechanical Systems, 2020, 29, 1106-1108.1.71	
---	--

18A wearable freestanding electrochemical sensing system. Science Advances, 2020, 6, eaaz0007.4.787

#	Article	IF	CITATIONS
19	Electroenzymatic Sensors: A Mediatorâ€Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring (Adv. Funct. Mater. 10/2020). Advanced Functional Materials, 2020, 30, 2070066.	7.8	0
20	Hydrogelâ€Enabled Transfer Printing: Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics (Adv. Funct. Mater. 6/2020). Advanced Functional Materials, 2020, 30, 2070038.	7.8	2
21	A ferrobotic system for automated microfluidic logistics. Science Robotics, 2020, 5, .	9.9	58
22	A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing. Lab on A Chip, 2019, 19, 2844-2853.	3.1	37
23	A wearable electrofluidic actuation system. Lab on A Chip, 2019, 19, 2966-2972.	3.1	15
24	A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics, 2019, 13, 064125.	1.2	118
25	Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4625-4630.	3.3	573
26	Processing gain and noise in multi-electrode impedance cytometers: Comprehensive electrical design methodology and characterization. Sensors and Actuators B: Chemical, 2017, 241, 672-680.	4.0	20
27	A fully integrated electronic platform for multiplexed intermolecular force spectroscopy. , 2017, , .		0
28	A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca ²⁺ and pH. ACS Nano, 2016, 10, 7216-7224.	7.3	480
29	Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sensors, 2016, 1, 866-874.	4.0	297
30	Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems. Advanced Materials Technologies, 2016, 1, 1600013.	3.0	167
31	Printed Carbon Nanotube Electronics and Sensor Systems. Advanced Materials, 2016, 28, 4397-4414.	11.1	369
32	Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529, 509-514.	13.7	3,508
33	Portable cytometry using microscale electronic sensing. Sensors and Actuators B: Chemical, 2016, 224, 275-281.	4.0	22
34	Tunable control of antibody immobilization using electric field. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1995-1999.	3.3	39
35	Extraction of Signal from Noise: Impedance Cytometry Using Multi-electrode Sensing. IEEE Sensors Journal, 2015, , 1-1.	2.4	3
36	Multiplexed actuation using ultra dielectrophoresis for proteomics applications: a comprehensive electrical and electrothermal design methodology. Lab on A Chip, 2014, 14, 2105-2114.	3.1	9

#	Article	IF	CITATIONS
37	Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry. Lab on A Chip, 2012, 12, 4499.	3.1	59
38	Smart Surface for Elution of Protein–Protein Bound Particles: Nanonewton Dielectrophoretic Forces Using Atomic Layer Deposited Oxides. Analytical Chemistry, 2012, 84, 10793-10801.	3.2	15
39	Use of Negative Dielectrophoresis for Selective Elution of Protein-Bound Particles. Analytical Chemistry, 2012, 84, 1432-1438.	3.2	33