Gabriela Paroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7244060/publications.pdf

Version: 2024-02-01

430442 433756 1,465 36 18 citations h-index papers

g-index 37 37 37 2107 docs citations times ranked citing authors all docs

31

#	Article	IF	CITATIONS
1	Caspase-2 Can Trigger Cytochrome c Release and Apoptosis from the Nucleus. Journal of Biological Chemistry, 2002, 277, 15147-15161.	1.6	159
2	Role of Caspases, Bid, and p53 in the Apoptotic Response Triggered by Histone Deacetylase Inhibitors Trichostatin-A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA). Journal of Biological Chemistry, 2003, 278, 12579-12589.	1.6	137
3	Caspase-dependent Regulation of Histone Deacetylase 4 Nuclear-Cytoplasmic Shuttling Promotes Apoptosis. Molecular Biology of the Cell, 2004, 15, 2804-2818.	0.9	128
4	Retinoids and breast cancer: From basic studies to the clinic and back again. Cancer Treatment Reviews, 2014, 40, 739-749.	3.4	113
5	PP2A Regulates HDAC4 Nuclear Import. Molecular Biology of the Cell, 2008, 19, 655-667.	0.9	108
6	The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis. EMBO Journal, 2001, 20, 2702-2714.	3.5	100
7	Caspase-2-induced Apoptosis Is Dependent on Caspase-9, but Its Processing during UV- or Tumor Necrosis Factor-dependent Cell Death Requires Caspase-3. Journal of Biological Chemistry, 2001, 276, 21907-21915.	1.6	95
8	Induction of miR-21 by Retinoic Acid in Estrogen Receptor-positive Breast Carcinoma Cells. Journal of Biological Chemistry, 2011, 286, 4027-4042.	1.6	82
9	Cellular and molecular determinants of all― <i>trans</i> retinoic acid sensitivity in breast cancer: <i>Luminal</i> phenotype and <scp>RAR</scp> α expression. EMBO Molecular Medicine, 2015, 7, 950-972.	3.3	60
10	Caspase activation and apoptosis in response to proteasome inhibitors. Cell Death and Differentiation, 2005, 12, 1240-1254.	5.0	52
11	Synergistic antitumor activity of lapatinib and retinoids on a novel subtype of breast cancer with coamplification of ERBB2 and RARA. Oncogene, 2012, 31, 3431-3443.	2.6	51
12	All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells. Journal of Biological Chemistry, 2015, 290, 17690-17709.	1.6	44
13	Atypical retinoids ST1926 and CD437 are S-phase-specific agents causing DNA double-strand breaks: significance for the cytotoxic and antiproliferative activity. Molecular Cancer Therapeutics, 2008, 7, 2941-2954.	1.9	39
14	Dephosphorylation and Caspase Processing Generate Distinct Nuclear Pools of Histone Deacetylase 4. Molecular and Cellular Biology, 2007, 27, 6718-6732.	1.1	35
15	MicroRNA networks regulated by <i>all-trans</i> retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget, 2015, 6, 13176-13200.	0.8	33
16	Network-guided modeling allows tumor-type independent prediction of sensitivity to all-trans-retinoic acid. Annals of Oncology, 2017, 28, 611-621.	0.6	31
17	p38 \hat{i} ±MAPK interacts with and inhibits RAR \hat{i} ±: suppression of the kinase enhances the therapeutic activity of retinoids in acute myeloid leukemia cells. Leukemia, 2012, 26, 1850-1861.	3.3	24
18	Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget, 0, 7, 42661-42682.	0.8	24

#	Article	IF	Citations
19	HER2-positive breast-cancer cell lines are sensitive to KDM5 inhibition: definition of a gene-expression model for the selection of sensitive cases. Oncogene, 2019, 38, 2675-2689.	2.6	23
20	Retinoids and breast cancer: new clues to increase their activity and selectivity. Breast Cancer Research, 2012, 14, 111.	2.2	18
21	S100A3 a partner protein regulating the stability/activity of RARα and PML-RARα in cellular models of breast/lung cancer and acute myeloid leukemia. Oncogene, 2019, 38, 2482-2500.	2.6	18
22	All-Trans Retinoic Acid Stimulates Viral Mimicry, Interferon Responses and Antigen Presentation in Breast-Cancer Cells. Cancers, 2020, 12, 1169.	1.7	15
23	New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: The role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome. European Journal of Cancer, 2013, 49, 1491-1500.	1.3	14
24	Effect of Oligomer Length and Base Substitutions on the Cytotoxic Activity and Specific Nuclear Protein Recognition of GTn Oligonucleotides in the Human Leukemic CCRF-CEM Cell Line. Nucleosides & Nucleotides, 1999, 18, 1711-1716.	0.5	11
25	Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid. Journal of Experimental and Clinical Cancer Research, 2019, 38, 436.	3.5	11
26	Retinoic Acid Sensitivity of Triple-Negative Breast Cancer Cells Characterized by Constitutive Activation of the notch1 Pathway: The Role of Rar \hat{l}^2 . Cancers, 2020, 12, 3027.	1.7	10
27	Reduction ofmdrlGene Amplification in Human Multidrug-Resistant LoVo DX Cell Line Is Promoted by Triple Helix-Forming Oligonucleotides. Oligonucleotides, 1999, 9, 261-270.	4.4	8
28	$RAR\hat{l}\pm 2$ and PML-RAR similarities in the control of basal and retinoic acid induced myeloid maturation of acute myeloid leukemia cells. Oncotarget, 2017, 8, 37041-37060.	0.8	8
29	Lipofuscin Accumulation and Gene Expression in Different Tissues of mnd Mice. Molecular Neurobiology, 2012, 45, 247-257.	1.9	6
30	A DOCK1 Gene-Derived Circular RNA Is Highly Expressed in Luminal Mammary Tumours and Is Involved in the Epithelial Differentiation, Growth, and Motility of Breast Cancer Cells. Cancers, 2021, 13, 5325.	1.7	6
31	Measurement of Caspase Activity: From Cell Populations to Individual Cells. Methods in Molecular Biology, 2011, 740, 65-79.	0.4	1
32	Abstract 1717: Combinations of retinoids and lapatinib in the treatment of Her2/Neu-positive breast carcinomas with co-amplification of the ERBB2 and RARA genes. , 2010, , .		0
33	Abstract 2287: A sub-population of HER2+breast carcinomas is characterized by co-amplification of the ERBB2 and RARA genes that renders cancer cells sensitive to retinoids and combinations of these agents with lapatinib. , 2011 , , .		0
34	Abstract 1836: p38 \hat{i} ± MAPK interacts with and inhibits RAR \hat{i} ±: Suppression of the kinase enhances the therapeutic activity of retinoids in acute myeloid leukemia cells. , 2012, , .		0
35	Abstract 2099: Cellular and molecular determinants of retinoic acid sensitivity in breast cancer. , 2014, , .		0
36	Abstract 2101: A gene-expression fingerprint predicting sensitivity to all-trans-retinoic acid in breast cancer cells is tumor-context independent. , 2016 , , .		0

3