Giuseppe Sciume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7243797/publications.pdf Version: 2024-02-01

CHISEDDE SCHIME

#	Article	IF	CITATIONS
1	BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature, 2013, 498, 506-510.	27.8	332
2	Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality. Cell, 2016, 165, 1120-1133.	28.9	273
3	TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nature Immunology, 2012, 13, 587-595.	14.5	255
4	Interleukin-27 Priming of T Cells Controls IL-17 Production In trans via Induction of the Ligand PD-L1. Immunity, 2012, 36, 1017-1030.	14.3	229
5	Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis and Rheumatology, 2017, 69, 148-160.	5.6	183
6	Distinct requirements for T-bet in gut innate lymphoid cells. Journal of Experimental Medicine, 2012, 209, 2331-2338.	8.5	160
7	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	14.3	137
8	The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunology, 2014, 7, 958-968.	6.0	132
9	EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 2015, 5, 10643.	3.3	129
10	CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood, 2008, 111, 3626-3634.	1.4	109
11	Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Research, 2015, 75, 4766-4777.	0.9	86
12	Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 2999-3014.	8.5	85
13	Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews, 2014, 261, 23-49.	6.0	76
14	A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood, 2014, 123, 2978-2987.	1.4	71
15	Chemokines and glioma: Invasion and more. Journal of Neuroimmunology, 2010, 224, 8-12.	2.3	67
16	CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-beta1. Neuro-Oncology, 2010, 12, 701-710.	1.2	63
17	CX3CR1 expression defines 2 KLRG1+ mouse NK-cell subsets with distinct functional properties and positioning in the bone marrow. Blood, 2011, 117, 4467-4475.	1.4	56
18	<pre><scp>JAK</scp>/<scp>STAT</scp> signaling in regulation of innate lymphoid cells: The gods before the guardians. Immunological Reviews, 2018, 286, 148-159.</pre>	6.0	51

GIUSEPPE SCIUME

#	Article	IF	CITATIONS
19	Differential chemotactic receptor requirements for NK cell subset trafficking into bone marrow. Frontiers in Immunology, 2013, 4, 12.	4.8	50
20	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	14.3	46
21	CX3CR1 Regulates the Maintenance of KLRG1+ NK Cells into the Bone Marrow by Promoting Their Entry into Circulation. Journal of Immunology, 2013, 191, 5684-5694.	0.8	40
22	When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. Science Advances, 2022, 8, eabj3286.	10.3	35
23	NCR ⁺ ILC3 maintain larger STAT4 reservoir via Tâ€BET to regulate type 1 features upon ILâ€23 stimulation in mice. European Journal of Immunology, 2018, 48, 1174-1180.	2.9	33
24	MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity, 2021, 54, 514-525.e6.	14.3	30
25	Granzyme A and CD160 expression delineates ILC1 with graded functions in the mouse liver. European Journal of Immunology, 2021, 51, 2568-2575.	2.9	28
26	Bone Marrow NK Cells: Origin, Distinctive Features, and Requirements for Tissue Localization. Frontiers in Immunology, 2019, 10, 1569.	4.8	27
27	Epigenomic Views of Innate Lymphoid Cells. Frontiers in Immunology, 2017, 8, 1579.	4.8	26
28	How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation. Frontiers in Immunology, 2017, 8, 1583.	4.8	19
29	HiJAKing Innate Lymphoid Cells?. Frontiers in Immunology, 2017, 8, 438.	4.8	14
30	Multi-Dimensional Gene Regulation in Innate and Adaptive Lymphocytes: A View From Regulomes. Frontiers in Immunology, 2021, 12, 655590.	4.8	12
31	Negative regulation of innate lymphoid cell responses in inflammation and cancer. Immunology Letters, 2019, 215, 28-34.	2.5	10
32	NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. International Journal of Molecular Sciences, 2022, 23, 7859.	4.1	10
33	Transcriptional, Epigenetic and Pharmacological Control of JAK/STAT Pathway in NK Cells. Frontiers in Immunology, 2019, 10, 2456.	4.8	8
34	NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Molecular Aspects of Medicine, 2021, 80, 100967.	6.4	7
35	JAK Inhibition Differentially Affects NK Cell and ILC1 Homeostasis. Frontiers in Immunology, 2019, 10, 2972.	4.8	6
36	The Regulatory Activity of Noncoding RNAs in ILCs. Cells, 2021, 10, 2742.	4.1	5

3

GIUSEPPE SCIUME

#	Article	IF	CITATIONS
37	The SIICA School of Immunology 2017: a gathering for NGS (next generation scientists). European Journal of Immunology, 2017, 47, 1402-1404.	2.9	2
38	Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): A Marie Sklodowska-Curie innovative training network. Virus Research, 2020, 287, 198094.	2.2	2
39	Guest editorial: Innate lymphocytes: Development, homeostasis, and disease. Cytokine and Growth Factor Reviews, 2018, 42, 1-4.	7.2	1
40	Assessing Phosphorylation of STAT Transcription Factors in Mouse Innate Lymphoid Cells. Methods in Molecular Biology, 2020, 2121, 59-70.	0.9	1
41	(Auto)Antibody Responses Shape Memory NK Cell Pool Size and Composition. Biomedicines, 2022, 10, 625.	3.2	0