
Milena Barcza Stockler Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7243663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brazil Nut (<i>Bertholletia excelsa</i> H.B.K) Retards Gastric Emptying and Modulates Enteric Glial Cells in a Dose-Dependent Manner. Journal of the American College of Nutrition, 2022, 41, 157-165.	1.1	7
2	Impact of Brazil Nut (<i>Bertholletia excelsa</i> , H.B.K.) Supplementation on Body Composition, Blood Pressure, and the Vascular Reactivity of Wistar Rats When Submitted to a Hypersodium Diet. Journal of the American College of Nutrition, 2022, 41, 559-568.	1.1	4
3	In vivo functional and health benefits of a prebiotic soursop whey beverage processed by high-intensity ultrasound: Study with healthy Wistar rats. Food Chemistry, 2022, 380, 132193.	4.2	7
4	5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sciences, 2022, 298, 120494.	2.0	2
5	Highâ€fat diets on the enteric nervous system: Possible interactions and mechanisms underlying dysmotility. Obesity Reviews, 2022, 23, e13404.	3.1	7
6	Brazil nut supplementation does not affect trimethylamineâ€nâ€oxide plasma levels in patients with coronary artery disease. Journal of Food Biochemistry, 2022, 46, e14201.	1.2	2
7	Probiotics and Prebiotics in Chronic Kidney Disease. , 2021, , 47-57.		0
8	Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far?. European Journal of Nutrition, 2021, 60, 3567-3584.	1.8	51
9	Effects of a Brazil nutâ€enriched diet on oxidative stress and inflammation markers in coronary artery disease patients: A small and preliminary randomised clinical trial. Nutrition Bulletin, 2021, 46, 139-148.	0.8	4
10	Brazil Nut Supplementation Does Not Regulate PPARβ/δ Signaling Pathway in Peripheral Blood Mononuclear Cells from Coronary Artery Disease Patients. Journal of the American College of Nutrition, 2021, , 1-8.	1.1	3
11	Beverages Rich in Resveratrol and Physical Activity Attenuate Metabolic Changes Induced by High-Fat Diet. Journal of the American College of Nutrition, 2020, 40, 1-11.	1.1	7
12	Nutritional strategies to modulate inflammation pathways via regulation of peroxisome proliferator-activated receptor \hat{I}^2/\hat{I} . Nutrition Reviews, 2019, 78, 207-214.	2.6	4
13	Aryl Hydrocarbon Receptor and Uremic Toxins from the Gut Microbiota in Chronic Kidney Disease Patients: Is There a Relationship between Them?. Biochemistry, 2019, 58, 2054-2060.	1.2	22
14	Methyl Donor Nutrients in Chronic Kidney Disease: Impact on the Epigenetic Landscape. Journal of Nutrition, 2019, 149, 372-380.	1.3	17
15	Nrf2, NF-κB and PPARβ/δ mRNA Expression Profile in Patients with Coronary Artery Disease. Arquivos Brasileiros De Cardiologia, 2019, 113, 1121-1127.	0.3	9
16	Probiotic Supplementation in Chronic Kidney Disease: A Double-blind, Randomized, Placebo-controlled Trial. , 2018, 28, 28-36.		98
17	From bench to the hemodialysis clinic: protein-bound uremic toxins modulate NF-κB/Nrf2 expression. International Urology and Nephrology, 2018, 50, 347-354.	0.6	34
18	Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food and Function, 2018, 9, 6508-6516.	2.1	80

MILENA BARCZA STOCKLER

#	Article	IF	CITATIONS
19	Does high intensity exercise affects irisin plasma levels in hemodialysis patients? A pilot study. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2018, 40, 53-58.	0.4	3
20	Brazil nut consumption modulates Nrf2 expression in hemodialysis patients: A pilot study. Molecular Nutrition and Food Research, 2016, 60, 1719-1724.	1.5	44
21	NF-ΪB expression and its association with nutritional status in hemodialysis patients. International Urology and Nephrology, 2016, 48, 2089-2094.	0.6	5
22	The uremic toxin indoxyl sulfate exacerbates reactive oxygen species production and inflammation in 3T3-L1 adipose cells. Free Radical Research, 2016, 50, 337-344.	1.5	51
23	Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin. Biochimie, 2016, 125, 53-58.	1.3	12
24	NRF2 and NF-κB mRNA expression in chronic kidney disease: a focus on nondialysis patients. International Urology and Nephrology, 2015, 47, 1985-1991.	0.6	15
25	Systemic inflammation and oxidative stress in hemodialysis patients are associated with down-regulation of Nrf2. Journal of Nephrology, 2015, 28, 495-501.	0.9	81
26	Effect of acute intradialytic strength physical exercise on oxidative stress and inflammatory responses in hemodialysis patients. Kidney Research and Clinical Practice, 2015, 34, 35-40.	0.9	35
27	Effects of resistance exercise training on acyl-ghrelin and obestatin levels in hemodialysis patients. Renal Failure, 2015, 37, 851-857.	0.8	15
28	EFFECT OF SELENIUM SUPPLEMENTATION VIA BRAZIL NUT (BERTHOLLETIA EXCELSA, HBK) ON THYROID HORMONES LEVELS IN HEMODIALYSIS PATIENTS: A PILOT STUDY. Nutricion Hospitalaria, 2015, 32, 1808-12.	0.2	8
29	Association between serum ferritin and lipid peroxidation in hemodialysis patients. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2015, 37, 171-6.	0.4	4
30	Selenium plasma levels in hemodialysis patients: Comparison between North and Southeast of Brazil. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2014, 36, 490-5.	0.4	8
31	Brazil Nut (Bertholletia excelsa, H.B.K.) Improves Oxidative Stress and Inflammation Biomarkers in Hemodialysis Patients. Biological Trace Element Research, 2014, 158, 105-112.	1.9	62
32	Resistance exercise: a strategy to attenuate inflammation and protein-energy wasting in hemodialysis patients?. International Urology and Nephrology, 2014, 46, 1655-1662.	0.6	45
33	Effects of grape powder supplementation on inflammatory and antioxidant markers in hemodialysis patients: A randomized double-blind study. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2014, 36, 496-501.	0.4	23
34	Reduced Plasma Zinc Levels, Lipid Peroxidation, and Inflammation Biomarkers Levels in Hemodialysis Patients: Implications to Cardiovascular Mortality. Renal Failure, 2013, 35, 680-685.	0.8	25
35	Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie, 2013, 95, 1525-1533.	1.3	161
36	Is There Association between Uric Acid and Inflammation in Hemodialysis Patients?. Renal Failure, 2013, 35, 361-366.	0.8	16

MILENA BARCZA STOCKLER

#	Article	IF	CITATIONS
37	The Relationship between Apelin and Parathyroid Hormone in Hemodialysis Patients. Renal Failure, 2012, 34, 970-973.	0.8	5
38	Nrf2–keap1 system versus NF-κB: The good and the evil in chronic kidney disease?. Biochimie, 2012, 94, 2461-2466.	1.3	154
39	Relationship between zinc levels and plasma leptin in hemodialysis patients. Journal of Trace Elements in Medicine and Biology, 2012, 26, 238-242.	1.5	15
40	Underreporting of Energy Intake in Maintenance Hemodialysis Patients: A Cross-sectional Study. , 2012, 22, 578-583.		18
41	Zinc-α2-Glycoprotein: Is There Association between This New Adipokine and Body Composition in Hemodialysis Patients?. Renal Failure, 2012, 34, 1062-1067.	0.8	13
42	ls zinc-α2-glycoprotein a cardiovascular protective factor for patients undergoing hemodialysis?. Clinica Chimica Acta, 2012, 413, 616-619.	0.5	37
43	Is a body mass index of 23 kg/m2 a reliable marker of protein–energy wasting in hemodialysis patients?. Nutrition, 2012, 28, 973-977.	1.1	27
44	Effect of Brazil Nut Supplementation on Plasma Levels of Selenium in Hemodialysis Patients: 12 Months of Follow-up. , 2012, 22, 434-439.		32
45	Apelin: A Peptide Involved in Cardiovascular Risk in Hemodialysis Patients?. Renal Failure, 2012, 34, 577-581.	0.8	22
46	Handgrip strength and its dialysis determinants in hemodialysis patients. Nutrition, 2011, 27, 1125-1129.	1.1	55