
Olga B Morozova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7243293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of Thymine Radicals by Tryptophan: a Study of CIDNP Kinetics. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113761.	3.9	2
2	Molecular features toward high photo-CIDNP hyperpolariztion explored through the oxidocyclization of tryptophan. Physical Chemistry Chemical Physics, 2021, 23, 6641-6650.	2.8	9
3	Reduction of transient histidine radicals by tryptophan: influence of the amino group charge. Physical Chemistry Chemical Physics, 2021, 23, 5919-5926.	2.8	5
4	Kinetic evidence for the transiently shifted acidity constant of histidine linked to paramagnetic tyrosine probed by intramolecular electron transfer in oxidized peptides. Physical Chemistry Chemical Physics, 2021, 23, 16698-16706.	2.8	1
5	Kynurenic acid and its chromophoric core 4-hydroxyquinoline react with tryptophan <i>via</i> proton-coupled electron transfer, and with tyrosine <i>via</i> H-transfer. Physical Chemistry Chemical Physics, 2021, 23, 22483-22491.	2.8	4
6	Exchange interaction in short-lived flavine adenine dinucleotide biradical in aqueous solution revisited by CIDNP (chemically induced dynamic nuclear polarization) and nuclear magnetic relaxation dispersion. Magnetic Resonance, 2021, 2, 139-148.	1.9	2
7	Reduction of Transient Histidine Radicals by Tyrosine: Influence of the Protonation State of Reactants. ChemPhysChem, 2020, 21, 43-50.	2.1	3
8	Proton-coupled electron transfer as the mechanism of reaction between triplet state of kynurenic acid and tryptophan. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112522.	3.9	10
9	Competition of singlet and triplet recombination of radical pairs in photoreactions of carboxy benzophenones and aromatic amino acids. Physical Chemistry Chemical Physics, 2019, 21, 2017-2028.	2.8	4
10	Timeâ€Resolved Chemically Induced Dynamic Nuclear Polarization of Biologically Important Molecules. ChemPhysChem, 2019, 20, 197-215.	2.1	41
11	Kinetics of Reversible Protonation of Transient Neutral Guanine Radical in Neutral Aqueous Solution. ChemPhysChem, 2018, 19, 2696-2702.	2.1	8
12	Electron transfer <i>vs.</i> proton-coupled electron transfer as the mechanism of reaction between amino acids and triplet-excited benzophenones revealed by time-resolved CIDNP. Physical Chemistry Chemical Physics, 2018, 20, 21127-21135.	2.8	22
13	Light-induced spin hyperpolarisation in condensed phase. Molecular Physics, 2017, 115, 2907-2943.	1.7	17
14	Indirect NMR detection of transient guanosyl radical protonation in neutral aqueous solution. Physical Chemistry Chemical Physics, 2017, 19, 21262-21266.	2.8	9
15	Relation between CIDNP formed upon geminate and bulk recombination of radical pairs. Journal of Chemical Physics, 2017, 147, 024303.	3.0	6
16	Intramolecular Electron Transfer from Tryptophan to Guanosyl Radicals in a Linked System as a Model of DNA Repair. Zeitschrift Fur Physikalische Chemie, 2017, 231, 479-495.	2.8	5
17	Magnetic Resonance Characterization of One-Electron Oxidized Cyclic Dipeptides with Thioether Groups. Journal of Physical Chemistry B, 2016, 120, 9277-9286.	2.6	11
18	Chemically induced dynamic nuclear polarization study of the reduction of histidine radical in the reactions with aromatic amino acids. Russian Chemical Bulletin, 2016, 65, 2907-2913.	1.5	6

Olga B Morozova

#	Article	IF	CITATIONS
19	CIDNP study of sensitized photooxidation of S-methylcysteine and S-methylglutathione in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 90-98.	3.9	8
20	Assessment of Nanosecond Time Scale Motions in Native and Non-Native States of Ubiquitin. Journal of Physical Chemistry B, 2015, 119, 12644-12652.	2.6	4
21	Modulation of the Rate of Reversible Electron Transfer in Oxidized Tryptophan and Tyrosine Containing Peptides in Acidic Aqueous Solution. Journal of Physical Chemistry B, 2015, 119, 140-149.	2.6	17
22	Effect of Amino Group Charge on the Photooxidation Kinetics of Aromatic Amino Acids. Journal of Physical Chemistry A, 2014, 118, 339-349.	2.5	21
23	Photooxidation of Histidine by 3,3′,4,4′-Benzophenone Tetracarboxylic Acid in Aqueous Solution: Time-Resolved and Field-Dependent CIDNP Study. Applied Magnetic Resonance, 2014, 45, 1019-1033.	1.2	16
24	Oxidation of Purine Nucleotides by Triplet 3,3′,4,4′-Benzophenone Tetracarboxylic Acid in Aqueous Solution: pH-Dependence. Journal of Physical Chemistry A, 2014, 118, 4966-4974.	2.5	10
25	Influence of the charge of amino group on rate and direction of intramolecular electron transfer reaction in shortlived oxidized peptides containing tryptophan and tyrosine. Doklady Physical Chemistry, 2013, 452, 233-238.	0.9	1
26	Reduction of Guanosyl Radicals in Reactions with Proteins Studied by TR-CIDNP. Applied Magnetic Resonance, 2013, 44, 233-245.	1.2	6
27	Influence of the charge of amino group on photoinduced oxidation of histidine. Doklady Physical Chemistry, 2013, 449, 66-70.	0.9	5
28	Synthesis of nucleotide–amino acid conjugates designed for photo-CIDNP experiments by a phosphotriester approach. Beilstein Journal of Organic Chemistry, 2013, 9, 2898-2909.	2.2	4
29	Changing the Direction of Intramolecular Electron Transfer in Oxidized Dipeptides Containing Tryptophan and Tyrosine. Journal of Physical Chemistry B, 2012, 116, 12221-12226.	2.6	10
30	Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP. Journal of Physical Chemistry B, 2012, 116, 8058-8063.	2.6	9
31	Time-resolved CIDNP: an NMR way to determine the EPR parameters of elusive radicals. Physical Chemistry Chemical Physics, 2011, 13, 6619.	2.8	60
32	1H CIDNP study of the kinetics and mechanism of the reversible photoinduced oxidation of tryptophyl-tryptophan dipeptide in aqueous solutions. Russian Chemical Bulletin, 2011, 60, 2579-2587.	1.5	8
33	Deprotonation of Transient Guanosyl Cation Radical Catalyzed by Buffer in Aqueous Solution: TR-CIDNP Study. Applied Magnetic Resonance, 2011, 41, 239-250.	1.2	9
34	Quantitative Approach to CIDNP in Proteins with Several Polarizable Residues on the Surface. Applied Magnetic Resonance, 2011, 41, 251-266.	1.2	5
35	Intramolecular Electron Transfer in the Photooxidized Peptides Tyrosine–Histidine and Histidine–Tyrosine: A Timeâ€Resolved CIDNP Study. Angewandte Chemie - International Edition, 2010, 49, 7996-7999.	13.8	22
36	TR-CIDNP as tool for quantitative analysis of hyperfine couplings in elusive radicals. Doklady Physical Chemistry, 2009, 428, 183-188.	0.9	7

Olga B Morozova

#	Article	IF	CITATIONS
37	Photo-CIDNP Study of Transient Radicals of Met-Gly and Gly-Met Peptides in Aqueous Solution at Variable pH. Journal of Physical Chemistry B, 2009, 113, 7398-7406.	2.6	14
38	Aminium Cation Radical of Glycylglycine and its Deprotonation to Aminyl Radical in Aqueous Solution. Journal of Physical Chemistry B, 2008, 112, 12859-12862.	2.6	18
39	Electron Transfer between Guanosine Radicals and Amino Acids in Aqueous Solution. II. Reduction of Guanosine Radicals by Tryptophan. Journal of Physical Chemistry B, 2008, 112, 2747-2754.	2.6	26
40	H and ¹³ C Hyperfine Coupling Constants of the Tryptophanyl Cation Radical in Aqueous Solution from Microsecond Time-Resolved CIDNP. Journal of Physical Chemistry B, 2007, 111, 11221-11227.	2.6	51
41	Electron Transfer between Guanosine Radical and Amino Acids in Aqueous Solution. 1. Reduction of Guanosine Radical by Tyrosine. Journal of Physical Chemistry B, 2007, 111, 7439-7448.	2.6	55
42	Time-Resolved Chemically Induced Dynamic Nuclear Polarization Studies of Structure and Reactivity of Methionine Radical Cations in Aqueous Solution as a Function of pH. Journal of Physical Chemistry A, 2005, 109, 10459-10466.	2.5	30
43	Reversibility of Electron Transfer in Tryptophanâ ^{^,} Tyrosine Peptide in Acidic Aqueous Solution Studied by Time-Resolved CIDNP. Journal of Physical Chemistry B, 2005, 109, 3668-3675.	2.6	23
44	Time-Resolved CIDNP Study of Non-Native States of Bovine and Human α-Lactalbumins. Journal of Physical Chemistry B, 2005, 109, 5912-5918.	2.6	11
45	Intramolecular Electron Transfer in Lysozyme Studied by Time-Resolved Chemically Induced Dynamic Nuclear Polarization. Journal of Physical Chemistry B, 2005, 109, 21971-21978.	2.6	21
46	Time-Resolved CIDNP Study of Native-State Bovine and Human α-Lactalbumins. Journal of Physical Chemistry B, 2004, 108, 15355-15363.	2.6	21
47	Intramolecular Electron Transfer in Tryptophanâ ° Tyrosine Peptide in Photoinduced Reaction in Aqueous Solution. Journal of Physical Chemistry B, 2003, 107, 1088-1096.	2.6	36
48	Time-resolved CIDNP and laser flash photolysis study of the photoreaction between triplet 2,2′-dipyridyl and guanosine-5′-monophosphate in water. Physical Chemistry Chemical Physics, 2003, 5, 3653-3659.	2.8	20
49	Time resolved CIDNP study of electron transfer reactions in proteins and model compounds. Molecular Physics, 2002, 100, 1187-1195.	1.7	49
50	Time-Resolved CIDNP Study of Intramolecular Charge Transfer in the Dipeptide Tryptophan-Tyrosine. Journal of Physical Chemistry B, 2002, 106, 1455-1460.	2.6	32
51	Spin and Molecular Dynamics in Acyl-Containing Biradicals:Â Time-Resolved Electron Paramagnetic Resonance and Laser Flash Photolysis Study. Journal of Physical Chemistry A, 2002, 106, 7121-7129.	2.5	13
52	Effects of Surfactants on the Photosensitized Production of Tyrosine Radicals Studied by Photo-CIDNP¶. Photochemistry and Photobiology, 2002, 75, 6.	2.5	9
53	Laser flash photolysis and time resolved CIDNP study of photoreaction of 2,2′-dipyridyl with N-acetyl tyrosine in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 131, 33-40.	3.9	43
54	Time-Resolved CIDNP and Laser Flash Photolysis Study of the Photoreactions of N-Acetyl Histidine with 2,2â€~-Dipyridyl in Aqueous Solution. Journal of Physical Chemistry A, 2000, 104, 6912-6916.	2.5	62

#	Article	IF	CITATIONS
55	Spin and Molecular Dynamics of Biradicals as Studied by Low Field Nuclear Polarization at Variable Temperature. Journal of Physical Chemistry A, 1999, 103, 980-988.	2.5	19
56	Kinetics and Mechanism of the Photochemical Reaction of 2,2â€~-Dipyridyl with Tryptophan in Water: Time-Resolved CIDNP and Laser Flash Photolysis Study. Journal of Physical Chemistry A, 1999, 103, 5362-5368.	2.5	68
57	Consecutive Biradicals during the Photolysis of 2,12-Dihydroxy-2,12-dimethylcyclododecanone:Â Low- and High-Field Chemically Induced Dynamic Nuclear Polarizations (CIDNP) Study. Journal of Physical Chemistry A, 1998, 102, 3492-3497.	2.5	19
58	Influence of Molecular Structure on the Rate of Intersystem Crossing in Flexible Biradicals. Journal of Physical Chemistry A, 1997, 101, 8809-8816.	2.5	45
59	1H and13C Nuclear Polarization in Consecutive Biradicals during the Photolysis of 2,2,12,12-Tetramethylcyclododecanone. Journal of Physical Chemistry A, 1997, 101, 399-406.	2.5	27
60	Study of Consecutive Biradicals from 2-Hydroxy-2,12-dimethylcyclododecanone by TR-CIDNP, TREPR, and Laser Flash Photolysis. Journal of Physical Chemistry A, 1997, 101, 8803-8808.	2.5	19
61	Cross-relaxation mechanism for the formation of nuclear polarization: a quantitative time-resolved CIDNP study. Chemical Physics Letters, 1995, 246, 499-505.	2.6	9
62	The influence of scavenging on CIDNP field dependences in biradicals during the photolysis of large-ring cycloalkanones. Chemical Physics, 1995, 197, 157-166.	1.9	14