List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7242606/publications.pdf Version: 2024-02-01

SHOU ΔΡΛΙ

#	Article	IF	CITATIONS
1	Origin of spinel-hosted mineral inclusions in mantle peridotite from Setogawa in the Circum-Izu Massif Serpentine Belt, central Japan: Implications for the chromitite genesis. Ore Geology Reviews, 2022, 140, 104422.	1.1	2
2	Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis. Minerals (Basel, Switzerland), 2021, 11, 209.	0.8	5
3	Crustal anorthosite formation by deepâ€seated hydrothermal circulation beneath fastâ€spreading axis: Constraints from chronological approach, Sr isotope, and fluid–chromite inclusion investigation. Island Arc, 2021, 30, e12423.	0.5	1
4	Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting. Solid Earth, 2020, 11, 23-36.	1.2	7
5	Post-Serpentinization Formation of Theophrastite-Zaratite by Heazlewoodite Desulfurization: An Implication for Shallow Behavior of Sulfur in a Subduction Complex. Minerals (Basel, Switzerland), 2020, 10, 806.	0.8	4
6	Hydrothermal Chromitites from the Oman Ophiolite: The Role of Water in Chromitite Genesis. Minerals (Basel, Switzerland), 2020, 10, 217.	0.8	12
7	Multi-scale development of a stratiform chromite ore body at the base of the dunitic mantle-crust transition zone (Maqsad diapir, Oman ophiolite): The role of repeated melt and fluid influxes. Lithos, 2019, 350-351, 105235.	0.6	11
8	Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nature Communications, 2019, 10, 5103.	5.8	42
9	Heterogeneity of Mantle Peridotites from the Polar Urals (Russia): Evidence from New LA-ICP-MS Data. Journal of Earth Science (Wuhan, China), 2019, 30, 431-450.	1.1	2
10	Editorial for Special Issue "Petrology, Geochemistry and Mineralogy of the Mantle as Tools to Read Messages from the Earth's Interior― Minerals (Basel, Switzerland), 2019, 9, 151.	0.8	1
11	Na–bearing tremolites as reservoirs of fluid–mobile elements in the mantle wedge: inference from the Ochiai–Hokubo complex (Southwest Japan) in high– <i>P</i> schists. Journal of Mineralogical and Petrological Sciences, 2019, 114, 231-237.	0.4	1
12	Did boninite originate from the heterogeneous mantle with recycled ancient slab?. Island Arc, 2018, 27, e12221.	0.5	17
13	Petrology of Chromitites in the Higashi-Akaishi Ultrahigh-Pressure (UHP) Peridotite Complex, Japan: Toward Understanding of General Features of the UHP Chromitites. Minerals (Basel, Switzerland), 2018, 8, 525.	0.8	4
14	Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines. Minerals (Basel, Switzerland), 2018, 8, 515.	0.8	11
15	Abyssal Peridotite as a Component of Forearc Mantle: Inference from a New Mantle Xenolith Suite of Bankawa in the Southwest Japan Arc. Minerals (Basel, Switzerland), 2018, 8, 540.	0.8	16
16	Decoding of Mantle Processes in the Mersin Ophiolite, Turkey, of End-Member Arc Type: Location of the Boninite Magma Generation. Minerals (Basel, Switzerland), 2018, 8, 464.	0.8	5
17	Na-rich character of metasomatic/metamorphic fluids inferred from preiswerkite in chromitite pods of the Khoy ophiolite in Iran: Role of chromitites as capsules of trapped fluids. Lithos, 2017, 268-271, 351-363.	0.6	10
18	Contribution of slab-derived fluid and sedimentary melt in the incipient arc magmas with development of the paleo-arc in the Oman Ophiolite. Chemical Geology, 2017, 449, 206-225.	1.4	31

#	Article	IF	CITATIONS
19	Metasomatic PCE mobilization by carbonatitic melt in the mantle: Evidence from sub-μm-scale sulfide–carbonaceous glass inclusion in Tahitian harzburgite xenolith. Chemical Geology, 2017, 475, 87-104.	1.4	14
20	Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust–mantle boundary zone. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	20
21	Formation and modification of chromitites in the mantle. Lithos, 2016, 264, 277-295.	0.6	123
22	Peridotite xenoliths from the Shiribeshi Seamount, Japan Sea: insights into mantle processes in a back-arc basin. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	6
23	High-temperature hydrothermal activities around suboceanic Moho: An example from diopsidite and anorthosite in Wadi Fizh, Oman ophiolite. Lithos, 2016, 263, 66-87.	0.6	17
24	Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines. Lithos, 2016, 262, 355-368.	0.6	18
25	Black-colored silica-rich veins in the Tetori Group from the southern Ishikawa Prefecture, Japan. Journal of the Geological Society of Japan, 2016, 122, 617-623.	0.2	1
26	A multiâ€geochronological study of the Hakusan volcano, central Japan. Island Arc, 2016, 25, 111-125.	0.5	1
27	Shock-wave compression of silica gel as a model material for comets. Physics and Chemistry of Minerals, 2016, 43, 493-502.	0.3	2
28	Three-dimensional Evolution of Melting, Heat and Melt Transfer in Ascending Mantle beneath a Fast-spreading Ridge Segment Constrained by Trace Elements in Clinopyroxene from Concordant Dunites and Host Harzburgites of the Oman Ophiolite. Journal of Petrology, 2016, 57, 777-814.	1.1	28
29	Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis. Lithos, 2016, 240-243, 309-326.	0.6	46
30	Reply to the comment of rollinson and adetunji "podiform chromitites do form beneath mid-ocean ridges―by Arai, S. And Miura, M. Lithos, 2016, 254-255, 134-136.	0.6	4
31	Structural Analysis of Crystalline R(+)-α-Lipoic Acid-α-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies. International Journal of Molecular Sciences, 2015, 16, 24614-24628.	1.8	11
32	Orthopyroxene-rich Rocks from the Sanbagawa Belt (SW Japan): Fluid–Rock Interaction in the Forearc Slab–Mantle Wedge Interface. Journal of Petrology, 2015, 56, 1113-1137.	1.1	15
33	Podiform chromitites do form beneath mid-ocean ridges. Lithos, 2015, 232, 143-149.	0.6	57
34	Measurement of whole-rock trace-element composition by flux-free fused glass and LA-ICP-MS: evaluation of simple and rapid routine work. Geochemical Journal, 2015, 49, 243-258.	0.5	21
35	Formation of discordant chromitite at the initiation of sub-arc mantle processes: Observations from the northern Oman ophiolite. Journal of Mineralogical and Petrological Sciences, 2014, 109, 38-43.	0.4	13
36	Petrology of mantle diopsidite from <scp>W</scp> adi <scp>F</scp> izh, northern <scp>O</scp> man ophiolite: <scp><scp>Cr</scp> scp>REE</scp> mobility by hydrothermal solution. Island Arc, 2014, 23, 312-323.	0.5	22

#	Article	IF	CITATIONS
37	PLATINUM-GROUP ELEMENT AND MINERAL CHARACTERISTICS OF SUB-ARC CHROMITITE XENOLITHS FROM THE TAKASHIMA ALKALI BASALT, SOUTHWEST JAPAN ARC. Canadian Mineralogist, 2014, 52, 899-916.	0.3	10
38	Spectroscopic Studies of R(+)-α-Lipoic Acid—Cyclodextrin Complexes. International Journal of Molecular Sciences, 2014, 15, 20469-20485.	1.8	29
39	Geochemistry of spinel-hosted amphibole inclusions in abyssal peridotite: insight into secondary melt formation in melt–peridotite reaction. Contributions To Mineralogy and Petrology, 2014, 167, 1.	1.2	27
40	Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite: New behavior of Cr and chromite. American Mineralogist, 2014, 99, 28-34.	0.9	81
41	Structural changes of synthetic opal by heat treatment. Physics and Chemistry of Minerals, 2013, 40, 747-755.	0.3	17
42	Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference. Earth and Planetary Science Letters, 2013, 379, 81-87.	1.8	96
43	Petrology of peridotite xenolith-bearing basaltic to andesitic lavas from the Shiribeshi Seamount, off northwestern Hokkaido, the Sea of Japan. Journal of Asian Earth Sciences, 2013, 76, 48-58.	1.0	13
44	Zeta equivalent fissionâ€track dating using <scp>LAâ€ICP</scp> â€ <scp>MS</scp> and examples with simultaneous <scp>U–P</scp> b dating. Island Arc, 2013, 22, 280-291.	0.5	63
45	Middle Paleozoic greenstones of the Hangay region, central Mongolia: Remnants of an accreted oceanic plateau and forearc magmatism. Journal of Mineralogical and Petrological Sciences, 2013, 108, 303-325.	0.4	11
46	Petrology and chemistry of basal lherzolites above the metamorphic sole from Wadi Sarami central Oman ophiolite. Journal of Mineralogical and Petrological Sciences, 2013, 108, 13-24.	0.4	24
47	A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-hosted Inclusions. Journal of Petrology, 2012, 53, 2411-2440.	1.1	100
48	Behavior of MORB magmas at uppermost mantle beneath a fast-spreading axis: an example from Wadi Fizh of the northern Oman ophiolite. Contributions To Mineralogy and Petrology, 2012, 164, 601-625.	1.2	38
49	Podiform chromitite classification revisited: A comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. Journal of Asian Earth Sciences, 2012, 59, 52-61.	1.0	80
50	Methane and propane micro-inclusions in olivine in titanoclinohumite-bearing dunites from the Sanbagawa high-P metamorphic belt, Japan: Hydrocarbon activity in a subduction zone and Ti mobility. Earth and Planetary Science Letters, 2012, 353-354, 1-11.	1.8	37
51	Denudation history of the Kiso Range, central Japan, and its tectonic implications: Constraints from lowâ€ŧemperature thermochronology. Island Arc, 2012, 21, 32-52.	0.5	31
52	Crustal diopsidites from the northern Oman ophiolite: Evidence for hydrothermal circulation through suboceanic Moho. Journal of Mineralogical and Petrological Sciences, 2011, 106, 261-266.	0.4	24
53	Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc, 2011, 20, 125-137.	0.5	127
54	Peculiar Mg–Ca–Si metasomatism along a shear zone within the mantle wedge: inference from fine-grained xenoliths from Avacha volcano, Kamchatka. Contributions To Mineralogy and Petrology, 2011, 161, 703-720.	1.2	23

#	Article	IF	CITATIONS
55	Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: evidence from the Happo-O'ne metaperidotites (Japan). Contributions To Mineralogy and Petrology, 2010, 159, 137-157.	1.2	62
56	Possible recycled origin for ultrahigh-pressure chromitites in ophiolites. Journal of Mineralogical and Petrological Sciences, 2010, 105, 280-285.	0.4	37
5 7	Petrologic profile of peridotite layers under a possible Moho in the northern Oman ophiolite: an example from Wadi Fizh. Journal of Mineralogical and Petrological Sciences, 2009, 104, 389-394.	0.4	33
58	Subarc magmatic and hydration processes inferred from a hornblende peridotite xenolith in spessartite from Kyoto, Japan. Journal of Mineralogical and Petrological Sciences, 2009, 104, 97-104.	0.4	5
59	Igneous, Alteration and Exhumation Processes Recorded in Abyssal Peridotites and Related Fault Rocks from an Oceanic Core Complex along the Central Indian Ridge. Journal of Petrology, 2009, 50, 1299-1325.	1.1	69
60	Highly silicic glasses in peridotite xenoliths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub-arc mantle. Lithos, 2009, 107, 93-106.	0.6	28
61	Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-scale melt penetrations into peridotites. Contributions To Mineralogy and Petrology, 2008, 155, 491-509.	1.2	73
62	Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth and Planetary Science Letters, 2007, 255, 289-305.	1.8	81
63	Insights into Petrological Characteristics of the Lithosphere of Mantle Wedge beneath Arcs through Peridotite Xenoliths: a Review. Journal of Petrology, 2007, 49, 665-695.	1.1	170
64	Trace element heterogeneity in hydrothermal diopside: evidence for Ti depletion and Sr-Eu-LREE enrichment during hydrothermal metamorphism of mantle harzburgite. Journal of Mineralogical and Petrological Sciences, 2007, 102, 143-149.	0.4	16
65	Peridotite xenoliths from the Takeshima seamount, Japan: an insight into the upper mantle beneath the Sea of Japan. Ganseki Kobutsu Kagaku, 2007, 36, 1-14.	0.1	5
66	Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization. Journal of African Earth Sciences, 2006, 46, 318-330.	0.9	49
67	Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 2006, 90, 43-56.	0.6	184
68	Determination of Multiple Trace Element Compositions in Thin (> 30 ?m) Layers of NIST SRM 614 and 616 Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Geostandards and Geoanalytical Research, 2005, 29, 107-122.	2.0	132
69	Simultaneous determination of multiple trace element compositions in thin (<30.MU.m) layers of BCR-2G by 193 nm ArF excimer laser ablation-ICP-MS: implications for matrix effect and elemental fractionation on quantitative analysis. Geochemical Journal, 2005, 39, 327-340.	0.5	77
70	Significance and Variety of Mantle-crust Boundary in the Oman Ophiolite. Journal of Geography (Chigaku Zasshi), 2003, 112, 750-768.	0.1	12
71	Possible platinum-group element (PGE) oxides in the PGE-mineralized chromitite from the Northern Oman Ophiolite Journal of Mineralogical and Petrological Sciences, 2002, 97, 190-198.	0.4	7
72	Mantle peridotite xenoliths from the Southwest Japan arc. A model for the sub-arc upper mantle structure and composition of the Western Pacific rim Journal of Mineralogical and Petrological Sciences, 2000, 95, 9-23.	0.4	65

#	Article	IF	CITATIONS
73	Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podiform chromitites. Lithos, 1998, 43, 1-14.	0.6	106
74	Jadeite, albite and nepheline as inclusions in spinel of chromitite from Hess Deep, equatorial Pacific: their genesis and implications for serpentinite diapir formation. Contributions To Mineralogy and Petrology, 1998, 131, 111-122.	1.2	38
75	Concentration of incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochimica Et Cosmochimica Acta, 1997, 61, 671-675.	1.6	85
76	Possible sub-arc origin of podiform chromitites. Island Arc, 1995, 4, 104-111.	0.5	73
77	Reaction of orthopyroxene in peridotite xenoliths with alkali-basalt melt and its implication for genesis of alpine-type chromitite. American Mineralogist, 1995, 80, 1041-1047.	0.9	80
78	Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research, 1994, 59, 279-293.	0.8	234
79	Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Economic Geology, 1994, 89, 1279-1288.	1.8	278
80	Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 1994, 113, 191-204.	1.4	805
81	Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 1992, 56, 173-184.	0.6	498
82	Origin of Ophiolitic Peridotites. Journal of Geography (Chigaku Zasshi), 1989, 98, 232-240.	0.1	4