
Aimin Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7241783/publications.pdf Version: 2024-02-01

AIMIN CE

#	Article	IF	CITATIONS
1	CO ₂ Reduction Catalysts on Gold Electrode Surfaces Influenced by Large Electric Fields. Journal of the American Chemical Society, 2018, 140, 17643-17655.	13.7	103
2	Interfacial Structure and Electric Field Probed by <i>in Situ</i> Electrochemical Vibrational Stark Effect Spectroscopy and Computational Modeling. Journal of Physical Chemistry C, 2017, 121, 18674-18682.	3.1	77
3	Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations. Accounts of Chemical Research, 2019, 52, 1289-1300.	15.6	53
4	Orientation of Cyano-Substituted Bipyridine Re(I) <i>fac</i> -Tricarbonyl Electrocatalysts Bound to Conducting Au Surfaces. Journal of Physical Chemistry C, 2016, 120, 1657-1665.	3.1	46
5	Surface-Induced Anisotropic Binding of a Rhenium CO ₂ -Reduction Catalyst on Rutile TiO ₂ (110) Surfaces. Journal of Physical Chemistry C, 2016, 120, 20970-20977.	3.1	44
6	Molecular orientation of organic thin films on dielectric solid substrates: a phase-sensitive vibrational SFG study. Physical Chemistry Chemical Physics, 2015, 17, 18072-18078.	2.8	33
7	Interfacial Structure of Soft Matter Probed by <scp>SFG</scp> Spectroscopy. Chemical Record, 2014, 14, 791-805.	5.8	31
8	Highly Efficient Plasmon Induced Hot-Electron Transfer at Ag/TiO ₂ Interface. ACS Photonics, 2021, 8, 1497-1504.	6.6	30
9	On the Coupling of Electron Transfer to Proton Transfer at Electrified Interfaces. Journal of the American Chemical Society, 2020, 142, 11829-11834.	13.7	29
10	Probing the electrode–solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. Journal of Chemical Physics, 2020, 153, 170902.	3.0	27
11	Electron–Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces. Journal of Physical Chemistry Letters, 2018, 9, 406-412.	4.6	22
12	Role of Oxygen in Surface Structures of the Solid-Electrolyte Interphase Investigated by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 17538-17547.	3.1	21
13	Surface-Ligand "Liquid―to "Crystalline―Phase Transition Modulates the Solar H2 Production Quantum Efficiency of CdS Nanorod/Mediator/Hydrogenase Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 35614-35625.	8.0	16
14	In Situ Spectroscopic Investigations of Electrochemical Oxygen Reduction and Evolution Reactions in Cyclic Carbonate Electrolyte Solutions. Journal of Physical Chemistry C, 2020, 124, 15781-15792.	3.1	16
15	Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy. ACS Applied Materials & Interfaces, 2015, 7, 22709-22718.	8.0	13
16	Dopant-Dependent SFG Response of Rhenium CO ₂ Reduction Catalysts Chemisorbed on SrTiO ₃ (100) Single Crystals. Journal of Physical Chemistry C, 2018, 122, 13944-13952.	3.1	10
17	Unraveling the Unstable Nature of Tetraglyme-Based Electrolytes toward Superoxide and the Inhibitory Effect of Lithium Ions by Using In Situ Vibrational Spectroscopies. Journal of Physical Chemistry C, 2022, 126, 2980-2989.	3.1	10
18	Effect of Head Group on Low-Level Ozone Oxidation of Unsaturated Phospholipids on a Water Surface. Bulletin of the Chemical Society of Japan, 2021, 94, 486-489.	3.2	8

Aimin Ge

#	Article	IF	CITATIONS
19	Robust Binding of Disulfide-Substituted Rhenium Bipyridyl Complexes for CO2 Reduction on Gold Electrodes. Frontiers in Chemistry, 2020, 8, 86.	3.6	7
20	Effects of Al2O3 atomic layer deposition on interfacial structure and electron transfer dynamics at Re-bipyridyl complex/TiO2 interfaces. Chemical Physics, 2018, 512, 68-74.	1.9	6
21	Surface-Restructuring Differences between Polyrotaxanes and Random Copolymers in Aqueous Environment. Langmuir, 2018, 34, 12463-12470.	3.5	6
22	Molecular Structures at Nafion/Graphene Interfaces Investigated by Sum-Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 6523-6530.	3.1	4