
Ming Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7241697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chemical Reviews, 2021, 121, 649-735.	23.0	388
2	A Simple Route to the Synthesis of Pt Nanobars and the Mechanistic Understanding of Symmetry Reduction. Chemistry - A European Journal, 2021, 27, 2760-2766.	1.7	5
3	Kinetically Controlled Synthesis of Rhodium Nanocrystals with Different Shapes and a Comparison Study of Their Thermal and Catalytic Properties. Journal of the American Chemical Society, 2021, 143, 6293-6302.	6.6	26
4	Pd–Au Asymmetric Nanopyramids: Lateral vs Vertical Growth of Au on Pd Decahedral Seeds. Chemistry of Materials, 2021, 33, 5391-5400.	3.2	9
5	Nanoscale cooperative adsorption for materials control. Nature Communications, 2021, 12, 4287.	5.8	26
6	Pt–Co truncated octahedral nanocrystals: a class of highly active and durable catalysts toward oxygen reduction. Nanoscale, 2020, 12, 11718-11727.	2.8	13
7	Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nature Reviews Materials, 2020, 5, 440-459.	23.3	118
8	Exploring Plasmonic Photocatalysis via Single-Molecule Reaction Imaging. Nano Letters, 2020, 20, 29, 2939-2940.	4.5	12
9	Quantitative Analysis of the Multiple Roles Played by Halide Ions in Controlling the Growth Patterns of Palladium Nanocrystals. ChemNanoMat, 2020, 6, 576-588.	1.5	21
10	Pdâ€Ru Alloy Nanocages with a Faceâ€Centered Cubic Structure and Their Enhanced Activity toward the Oxidation of Ethylene Glycol and Glycerol. Small Methods, 2020, 4, 1900843.	4.6	46
11	Decahedral nanocrystals of noble metals: Synthesis, characterization, and applications. Materials Today, 2019, 22, 108-131.	8.3	92
12	Catalytic System Based on Sub-2 nm Pt Particles and Its Extraordinary Activity and Durability for Oxygen Reduction. Nano Letters, 2019, 19, 4997-5002.	4.5	68
13	Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Materials Today Energy, 2019, 12, 129-135.	2.5	54
14	Ruthenium Nanoframes in the Face-Centered Cubic Phase: Facile Synthesis and Their Enhanced Catalytic Performance. ACS Nano, 2019, 13, 7241-7251.	7.3	47
15	Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, {111} Facets, Thermal Stability up to 400 ŰC, and Enhanced Catalytic Activity. Journal of the American Chemical Society, 2019, 141, 7028-7036.	6.6	122
16	Facile Synthesis of Pt Icosahedral Nanocrystals with Controllable Sizes for the Evaluation of Sizeâ€Đependent Activity toward Oxygen Reduction. ChemCatChem, 2019, 11, 2458-2463.	1.8	11
17	Oneâ€Pot Synthesis of Pd@Pt _{<i>n</i>L} Coreâ€Shell Icosahedral Nanocrystals in High Throughput through a Quantitative Analysis of the Reduction Kinetics. Chemistry - A European Journal, 2019, 25, 5322-5329.	1.7	12
18	Au@Cu Core–Shell Nanocubes with Controllable Sizes in the Range of 20–30 nm for Applications in Catalysis and Plasmonics. ACS Applied Nano Materials, 2019, 2, 1533-1540.	2.4	22

Ming Zhao

#	Article	IF	CITATIONS
19	Site-selective growth of Ag nanocubes for sharpening their corners and edges, followed by elongation into nanobars through symmetry reduction. Journal of Materials Chemistry C, 2018, 6, 1384-1392.	2.7	27
20	Rhodium Decahedral Nanocrystals: Facile Synthesis, Mechanistic Insights, and Experimental Controls. ChemNanoMat, 2018, 4, 66-70.	1.5	15
21	Quantitative analysis of the reduction kinetics of a Pt(II) precursor in the context of Pt nanocrystal synthesis. Chinese Journal of Chemical Physics, 2018, 31, 370-374.	0.6	11
22	Toward affordable and sustainable use of precious metals in catalysis and nanomedicine. MRS Bulletin, 2018, 43, 860-869.	1.7	9
23	Frontispiece: Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chemistry - A European Journal, 2018, 24, .	1.7	0
24	Facile synthesis of Pt–Ag octahedral and tetrahedral nanocrystals with enhanced activity and durability toward methanol oxidation. Journal of Materials Research, 2018, 33, 3891-3897.	1.2	3
25	A Rationally Designed Route to the One-Pot Synthesis of Right Bipyramidal Nanocrystals of Copper. Chemistry of Materials, 2018, 30, 6469-6477.	3.2	28
26	Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction. Materials Today, 2018, 21, 834-844.	8.3	58
27	Enabling Complete Ligand Exchange on the Surface of Gold Nanocrystals through the Deposition and Then Etching of Silver. Journal of the American Chemical Society, 2018, 140, 11898-11901.	6.6	53
28	Enhancing the tactile and near-infrared sensing capabilities of electrospun PVDF nanofibers with the use of gold nanocages. Journal of Materials Chemistry C, 2018, 6, 10263-10269.	2.7	18
29	Synthesis of Ru Icosahedral Nanocages with a Face-Centered-Cubic Structure and Evaluation of Their Catalytic Properties. ACS Catalysis, 2018, 8, 6948-6960.	5.5	66
30	Shapeâ€Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed. Advanced Materials, 2018, 30, e1706312.	11.1	114
31	Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Well ontrolled Surface Structures. Advanced Materials, 2018, 30, e1801956.	11.1	83
32	Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chemistry - A European Journal, 2018, 24, 16944-16963.	1.7	143
33	Graphene coated La 3+ /Sc 3+ co-doped Li 4 Ti 5 O 12 anodes for enhanced Li-ion battery performance. Materials Letters, 2017, 193, 179-182.	1.3	11
34	Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication. Chemical Physics Letters, 2017, 683, 613-618.	1.2	13
35	Facile Synthesis of Ru-Based Octahedral Nanocages with Ultrathin Walls in a Face-Centered Cubic Structure. Chemistry of Materials, 2017, 29, 9227-9237.	3.2	55
36	Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Letters, 2016, 16, 6644-6649.	4.5	150

Ming Zhao

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Ru Cubic Nanocages with a Face-Centered Cubic Structure by Templating with Pd Nanocubes. Nano Letters, 2016, 16, 5310-5317.	4.5	110
38	Toward a Quantitative Understanding of the Sulfate-Mediated Synthesis of Pd Decahedral Nanocrystals with High Conversion and Morphology Yields. Chemistry of Materials, 2016, 28, 8800-8806.	3.2	20
39	Ruthenium–platinum core–shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy, 2016, 21, 247-257.	8.2	121
40	Performance improvement of the open-cathode proton exchange membrane fuel cell by optimizing membrane electrode assemblies. International Journal of Hydrogen Energy, 2015, 40, 7159-7167.	3.8	27
41	Influence of Membrane Thickness on Membrane Degradation and Platinum Agglomeration under Long-term Open Circuit Voltage Conditions. Electrochimica Acta, 2015, 153, 254-262.	2.6	35
42	Analysis of carbon-supported platinum through potential cycling and potential-static holding. International Journal of Hydrogen Energy, 2014, 39, 13725-13737.	3.8	17
43	The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests. International Journal of Hydrogen Energy, 2014, 39, 14381-14390.	3.8	103
44	Vitamin E assisted polymer electrolyte fuel cells. Energy and Environmental Science, 2014, 7, 3362-3370.	15.6	35
45	The performance improvement of membrane and electrode assembly in open-cathode proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2013, 38, 10978-10984.	3.8	22
46	Assessing the shear band velocity in metallic glasses using a coupled thermo-mechanical model. Philosophical Magazine Letters, 2011, 91, 705-712.	0.5	13
47	Synthesis and Characterization of Ptâ€Ag Icosahedral Nanocages with Enhanced Catalytic Activity toward Oxygen Reduction. ChemNanoMat, 0, , .	1.5	1