List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7241529/publications.pdf Version: 2024-02-01

ΖΗΙ-SΗΛΝ ΒΟ

#	Article	IF	CITATIONS
1	Chlorination Enabling a Low ost Benzodithiopheneâ€Based Wideâ€Bandgap Donor Polymer with an Efficiency of over 17%. Advanced Materials, 2022, 34, e2105483.	11.1	53
2	Highâ€Efficiency Organic Solar Cells with Reduced Nonradiative Voltage Loss Enabled by a Highly Emissive Narrow Bandgap Fused Ring Acceptor. Advanced Functional Materials, 2022, 32, 2107756.	7.8	38
3	Simple Tricyclic-Based A-ï€-D-ï€-A-Type Nonfullerene Acceptors for High-Efficiency Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 6039-6047.	4.0	14
4	An asymmetric A–DA′D–Ĩ€-A type non-fullerene acceptor for high-performance organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2792-2799.	2.7	8
5	High-performance nonfused ring electron acceptor with a steric hindrance induced planar molecular backbone. Science China Chemistry, 2022, 65, 594-601.	4.2	33
6	Diphenylamine Substituted High-performance Fully Nonfused Ring Electron Acceptors: The Effect of Isomerism. Chemical Engineering Journal, 2022, 435, 134987.	6.6	17
7	A Versatile Planar Building Block with C _{2V} Symmetry for Highâ€Performance Nonâ€Halogenated Solvent Processable Polymer Donors. Advanced Energy Materials, 2022, 12, .	10.2	29
8	High efficiency ternary organic solar cells via morphology regulation with asymmetric nonfused ring electron acceptor. Chemical Engineering Journal, 2022, 438, 135384.	6.6	14
9	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
10	Designing High-Performance Nonfused Ring Electron Acceptors <i>via</i> Synergistically Adjusting Side Chains and Electron-Withdrawing End-Groups. ACS Applied Materials & Interfaces, 2022, 14, 21287-21294.	4.0	12
11	A simple high-performance fully nonfused ring electron acceptor with a planar molecular backbone. Chemical Engineering Journal, 2022, 444, 136472.	6.6	19
12	High-Performance Non-fullerene organic solar cells enabled by noncovalent Conformational locks and Side-Chain engineering. Chemical Engineering Journal, 2022, 446, 137206.	6.6	10
13	Thermal annealing effect on non-fused ring acceptor based bulk heterojunction investigated by transient absorption spectroscopy. Journal of Photochemistry and Photobiology, 2022, 11, 100129.	1.1	2
14	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
15	Ultrafast Carrier Dynamics of Non-fullerene Acceptors with Different Planarity: Impact of Steric Hindrance. Journal of Physical Chemistry Letters, 2022, 13, 5860-5866.	2.1	15
16	Random Terpolymer Enabling Highâ€Efficiency Organic Solar Cells Processed by Nonhalogenated Solvent with a Low Nonradiative Energy Loss. Advanced Functional Materials, 2022, 32, .	7.8	49
17	Molecular-Shape-Controlled Nonfused Ring Electron Acceptors for High-Performance Organic Solar Cells with Tunable Phase Morphology. ACS Applied Materials & Interfaces, 2022, 14, 28807-28815.	4.0	16
18	End-group modification of non-fullerene acceptors enables efficient organic solar cells. Journal of Materials Chemistry C, 2022, 10, 10389-10395.	2.7	8

#	Article	IF	CITATIONS
19	Effect of Polymer Chain Regularity on the Photovoltaic Performance of Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 996-1002.	2.0	3
20	Simple dithienosilole-based nonfused nonfullerene acceptor for efficient organic photovoltaics. Dyes and Pigments, 2021, 184, 108789.	2.0	14
21	Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chemical Communications, 2021, 57, 302-314.	2.2	65
22	Improving the performance of organic solar cells by side chain engineering of fused ring electron acceptors. Journal of Materials Chemistry C, 2021, 9, 6937-6943.	2.7	13
23	Insights into out-of-plane side chains effects on optoelectronic and photovoltaic properties of simple non-fused electron acceptors. Organic Electronics, 2021, 89, 106029.	1.4	14
24	Highâ€Efficiency Organic Solar Cells Based on a Lowâ€Cost Fully Nonâ€Fused Electron Acceptor. Advanced Functional Materials, 2021, 31, 2101742.	7.8	98
25	Achieving a Higher Energy Charge-Transfer State and Reduced Voltage Loss for Organic Solar Cells using Nonfullerene Acceptors with Norbornenyl-Functionalized Terminal Groups. ACS Applied Materials & Interfaces, 2021, 13, 24765-24773.	4.0	6
26	Flexible–Rigid Synergetic Strategy for Saddle-Shaped Perylene Diimide Acceptors in As-Cast Polymer Solar Cells. Journal of Physical Chemistry C, 2021, 125, 10841-10849.	1.5	12
27	Fused perylenediimide dimer as nonfullerene acceptor for high-performance organic solar cells. Dyes and Pigments, 2021, 189, 109269.	2.0	8
28	A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 2021, 40, 2712-2729.	3.6	138
29	Highâ€Efficiency Organic Solar Cells Based on Asymmetric Acceptors Bearing One 3D Shapeâ€Persistent Terminal Group. Advanced Functional Materials, 2021, 31, 2103445.	7.8	42
30	High-Performance Simple Nonfused Ring Electron Acceptors with Diphenylamino Flanking Groups. ACS Applied Materials & Interfaces, 2021, 13, 39652-39659.	4.0	47
31	Improving the Efficiency of Organic Solar Cells by Introducing Perylene Diimide Derivative as Third Component and Individually Dissolving Donor/Acceptor. ChemSusChem, 2021, 14, 5442-5449.	3.6	9
32	Effect of polymer molecular weight and processing solvent on the morphology and photovoltaic performance of inverted non-fullerene solar cells. Dyes and Pigments, 2021, 194, 109560.	2.0	3
33	Synthesis of hybrid Au-Ag2S-Cu2-xS nanocrystals with disparate interfacial features. Journal of Colloid and Interface Science, 2021, 603, 11-16.	5.0	3
34	Hybrid Nonfused-Ring Electron Acceptors with Fullerene Pendant for High-Efficiency Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 1603-1611.	4.0	19
35	Simple Nonfused Ring Electron Acceptors with 3D Network Packing Structure Boosting the Efficiency of Organic Solar Cells to 15.44%. Advanced Energy Materials, 2021, 11, 2102591.	10.2	111
36	Nonfused Ring Electron Acceptors with a Small Side-Chain Difference Lead to Vastly Different Power Conversion Efficiencies: Impact of Aggregation. Journal of Physical Chemistry C, 2021, 125, 23613-23621.	1.5	8

#	Article	IF	CITATIONS
37	Ternary Strategy Enabling Highâ€Performance Organic Solar Cells with Optimized Film Morphology and Reduced Nonradiative Energy Loss. Solar Rrl, 2021, 5, 2100806.	3.1	10
38	Nonfullerene acceptors with an N-annulated perylene core and two perylene diimide units for efficient organic solar cells. Dyes and Pigments, 2020, 173, 107970.	2.0	9
39	Photovoltaic Performances of Fused Ring Acceptors with Isomerized Ladder-Type Dipyran Cores. ACS Applied Materials & Interfaces, 2020, 12, 4887-4894.	4.0	20
40	High-efficiency ternary nonfullerene polymer solar cells with increased phase purity and reduced nonradiative energy loss. Journal of Materials Chemistry A, 2020, 8, 2123-2130.	5.2	29
41	Highly luminescent ladder dimer based on perylene diimides and norbornane. Dyes and Pigments, 2020, 175, 108152.	2.0	5
42	Regulating the Packing of Non-Fullerene Acceptors via Multiple Noncovalent Interactions for Enhancing the Performance of Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 4638-4648.	4.0	87
43	Application of a new π-conjugated ladder-like polymer in enhancing the stability and efficiency of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1417-1424.	5.2	32
44	Perylene diimide acceptor with two planar arms and a twisted core for high efficiency polymer solar cells. Dyes and Pigments, 2020, 175, 108186.	2.0	17
45	High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability. Journal of Materials Chemistry A, 2020, 8, 22907-22917.	5.2	27
46	A Green Solvent Processable Wideâ€Bandgap Conjugated Polymer for Organic Solar Cells. Solar Rrl, 2020, 4, 2000547.	3.1	13
47	Regulating molecular orientations of dipyran-based nonfullerene acceptors through side-chain engineering at the ï€-bridge. Journal of Materials Chemistry A, 2020, 8, 22416-22422.	5.2	13
48	Enhancing the Photovoltaic Performance of a Benzo[<i>c</i>][1,2,5]thiadiazole-Based Polymer Donor via a Non-Fullerene Acceptor Pairing Strategy. ACS Applied Materials & Interfaces, 2020, 12, 53021-53028.	4.0	6
49	Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on 3,4-(2,2-Dihexylpropylenedioxy)thiophene. ACS Applied Materials & Interfaces, 2020, 12, 40590-40598.	4.0	18
50	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€State Photochromism. Angewandte Chemie, 2020, 132, 20336-20341.	1.6	12
51	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€State Photochromism. Angewandte Chemie - International Edition, 2020, 59, 20161-20166.	7.2	47
52	PDI-Based Hexapod-Shaped Nonfullerene Acceptors for the High-Performance As-Cast Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37409-37417.	4.0	16
53	Extended π-conjugated perylene diimide dimers toward efficient organic solar cells. Dyes and Pigments, 2020, 183, 108736.	2.0	9
54	A Fully Nonâ€fused Ring Acceptor with Planar Backbone and Nearâ€IR Absorption for High Performance Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 22714-22720.	7.2	184

#	Article	IF	CITATIONS
55	A Fully Nonâ€fused Ring Acceptor with Planar Backbone and Nearâ€IR Absorption for High Performance Polymer Solar Cells. Angewandte Chemie, 2020, 132, 22903-22909.	1.6	23
56	Noncovalently Fused-Ring Electron Acceptors with <i>C</i> _{2<i>v</i>} Symmetry for Regulating the Morphology of Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 46220-46230.	4.0	43
57	Enhancing the Performance of Organic Solar Cells by Prolonging the Lifetime of Photogenerated Excitons. Advanced Materials, 2020, 32, e2003164.	11.1	42
58	Small molecule acceptors with a ladder-like core for high-performance organic solar cells with low non-radiative energy losses. Journal of Materials Chemistry A, 2020, 8, 12495-12501.	5.2	57
59	The preparation of plasmonic Au@SiO2 NPs and its application in polymer solar cells. Materials Letters, 2020, 268, 127599.	1.3	7
60	Efficient Organic Solar Cells Based on Non-Fullerene Acceptors with Two Planar Thiophene-Fused Perylene Diimide Units. ACS Applied Materials & Interfaces, 2020, 12, 10746-10754.	4.0	23
61	Highâ€Efficiency Asâ€Cast Organic Solar Cells Based on Acceptors with Steric Hindrance Induced Planar Terminal Group. Advanced Energy Materials, 2019, 9, 1901280.	10.2	86
62	Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nature Communications, 2019, 10, 3038.	5.8	297
63	Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells. Journal of Materials Chemistry C, 2019, 7, 819-825.	2.7	37
64	Crosslinked and dopant free hole transport materials for efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5522-5529.	5.2	41
65	Fluoro-Modulated Molecular Geometry in Diketopyrrolopyrrole-Based Low-Bandgap Copolymers for Tuning the Photovoltaic Performance. Frontiers in Chemistry, 2019, 7, 333.	1.8	3
66	The preparation of Ag3BiBr6 films and their preliminary use for solution processed photovoltaics. SN Applied Sciences, 2019, 1, 1.	1.5	5
67	Impact of the Bonding Sites at the Inner or Outer π-Bridged Positions for Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 19444-19451.	4.0	24
68	Ladder-like conjugated polymers used as hole-transporting materials for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14473-14477.	5.2	48
69	Tuning the dipole moments of nonfullerene acceptors with an asymmetric terminal strategy forÂhighly efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 8889-8896.	5.2	86
70	Polymer solar cells based on spontaneously-spreading film with double electron-transporting layers. Organic Electronics, 2019, 69, 56-61.	1.4	7
71	Dihydropyreno[1,2-b:6,7-bâ€2]dithiophene based electron acceptors for high efficiency as-cast organic solar cells. Journal of Materials Chemistry A, 2019, 7, 5943-5948.	5.2	21
72	Nonfullerene acceptors with a novel nonacyclic core for high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 3335-3341.	2.7	5

#	Article	IF	CITATIONS
73	Nonfullerene acceptors comprising a naphthalene core for high efficiency organic solar cells. RSC Advances, 2019, 9, 39163-39169.	1.7	7
74	Naphthalene core-based noncovalently fused-ring electron acceptors: effects of linkage positions on photovoltaic performances. Journal of Materials Chemistry C, 2019, 7, 15141-15147.	2.7	24
75	Perylene Monoimide Dimers Enhance Ternary Organic Solar Cells Efficiency by Induced D–A Crystallinity. ACS Applied Energy Materials, 2019, 2, 305-311.	2.5	16
76	Controlling Molecular Packing and Orientation via Constructing a Ladder-Type Electron Acceptor with Asymmetric Substituents for Thick-Film Nonfullerene Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 3098-3106.	4.0	40
77	Fused-ring acceptor with a spiro-bridged ladder-type core for organic solar cells. Dyes and Pigments, 2019, 163, 153-158.	2.0	9
78	Planar copolymers for high-efficiency polymer solar cells. Science China Chemistry, 2019, 62, 9-13.	4.2	27
79	Bis(carboxylate) substituted benzodithiophene based wide-bandgap polymers for high performance nonfullerene polymer solar cells. Dyes and Pigments, 2019, 162, 120-125.	2.0	7
80	Facile Synthesis of the O-Functionalized Ladder-Type Dipyran Building Block and Its Application in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 13931-13940.	4.0	9
81	Molecular Consideration for Small Molecular Acceptors Based on Ladderâ€Type Dipyran: Influences of Oâ€Functionalization and Ï€â€Bridges. Advanced Functional Materials, 2018, 28, 1705927.	7.8	49
82	Fused pentacyclic electron acceptors with four <i>cis</i> -arranged alkyl side chains for efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 3724-3729.	5.2	27
83	High efficiency small molecular acceptors based on novel O-functionalized ladder-type dipyran building block. Nano Energy, 2018, 45, 10-20.	8.2	45
84	High-performance polymer solar cells with >13% efficiency. Science China Chemistry, 2018, 61, 507-508.	4.2	3
85	High efficiency ternary polymer solar cells based on a fused pentacyclic electron acceptor. Journal of Materials Chemistry A, 2018, 6, 6854-6859.	5.2	16
86	The design of highly efficient polymer solar cells with outstanding short-circuit current density based on small band gap electron acceptor. Dyes and Pigments, 2018, 150, 363-369.	2.0	15
87	The influence of the π-bridging unit of fused-ring acceptors on the performance of organic solar cells. Journal of Materials Chemistry A, 2018, 6, 21335-21340.	5.2	30
88	Enhancing the Performance of Non-Fullerene Organic Solar Cells Using Regioregular Wide-Bandgap Polymers. Macromolecules, 2018, 51, 8646-8651.	2.2	39
89	Broadband Absorption Enhancement in Polymer Solar Cells Using Highly Efficient Plasmonic Heterostructured Nanocrystals. ACS Applied Materials & Interfaces, 2018, 10, 30919-30924.	4.0	16
90	Enhance the performance of polymer solar cells via extension of the flanking end groups of fused ring acceptors. Science China Chemistry, 2018, 61, 1320-1327.	4.2	22

#	Article	IF	CITATIONS
91	Nonfullerene Acceptors with Enhanced Solubility and Ordered Packing for High-Efficiency Polymer Solar Cells. ACS Energy Letters, 2018, 3, 1832-1839.	8.8	115
92	A propeller-shaped perylene diimide hexamer as a nonfullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 9336-9340.	2.7	28
93	A simple strategy to achieve shape control of Au-Cu2â^'xS colloidal heterostructured nanocrystals and their preliminary use in organic photovoltaics. Nanoscale, 2018, 10, 11745-11749.	2.8	12
94	Enhancing the Performance of Organic Solar Cells by Hierarchically Supramolecular Self-Assembly of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 4307-4312.	3.2	116
95	Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 3356-3359.	6.6	499
96	Structure difference of sorbitol derivatives influences the crystallization and performance of P3OT/PCBM organic photovoltaic solar cells. Organic Electronics, 2017, 46, 158-165.	1.4	10
97	Enhancing the Performance of Polymer Solar Cells by Using Donor Polymers Carrying Discretely Distributed Side Chains. ACS Applied Materials & amp; Interfaces, 2017, 9, 24020-24026.	4.0	14
98	Growth and carrier-transport performance of a poly(3-hexylthiophene)/1,2,3,4-bis(p-methylbenzylidene) sorbitol hybrid shish-kebab nanostructure. Journal of Materials Chemistry C, 2017, 5, 3983-3992.	2.7	12
99	Simultaneous enhancement of the molecular planarity and the solubility of non-fullerene acceptors: effect of aliphatic side-chain substitution on the photovoltaic performance. Journal of Materials Chemistry A, 2017, 5, 7776-7783.	5.2	87
100	Hyperbranched polymer as an acceptor for polymer solar cells. Chemical Communications, 2017, 53, 537-540.	2.2	26
101	Formation of phenyl-C61-butyric acid methyl ester nanoscale aggregates after supercritical carbon dioxide annealing. Journal of Materials Science, 2017, 52, 2484-2494.	1.7	1
102	Influence of polymer side chains on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry C, 2017, 5, 937-942.	2.7	19
103	Two-Dimensional Conjugated Polymer Based on sp ² -Carbon Bridged Indacenodithiophene for Efficient Polymer Solar Cells. Macromolecules, 2017, 50, 7984-7992.	2.2	27
104	Fusedâ€Ring Acceptors with Asymmetric Side Chains for Highâ€Performance Thickâ€Film Organic Solar Cells. Advanced Materials, 2017, 29, 1703527.	11.1	238
105	Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33906-33912.	4.0	66
106	Amphiphilic dendrons with a pyrene functional group at the focal point: synthesis, self-assembly and generation-dependent DNA condensation. Polymer Chemistry, 2017, 8, 4798-4804.	1.9	8
107	Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells. Data in Brief, 2017, 14, 531-537.	0.5	3
108	Molecular "Flower―as the High-Mobility Hole-Transport Material for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43855-43860.	4.0	31

#	Article	IF	CITATIONS
109	Vinylene- and ethynylene-bridged perylene diimide dimers as nonfullerene acceptors for polymer solar cells. Dyes and Pigments, 2017, 146, 143-150.	2.0	16
110	Non-fullerene small molecular acceptors with a carbazole core for organic solar cells with high open-circuit voltage. Dyes and Pigments, 2017, 146, 293-299.	2.0	17
111	Enhancing the Efficiency of Polymer Solar Cells by Incorporation of 2,5-Difluorobenzene Units into the Polymer Backbone via Random Copolymerization. ACS Applied Materials & Interfaces, 2017, 9, 23775-23781.	4.0	9
112	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	11.1	360
113	High efficiency polymer solar cells based on alkylthio substituted benzothiadiazole-quaterthiophene alternating conjugated polymers. Organic Electronics, 2017, 40, 36-41.	1.4	16
114	A Biomimetic Voltageâ€Gated Chloride Nanochannel. Advanced Materials, 2016, 28, 3181-3186.	11.1	77
115	Investigation into the Sensing Process of Highâ€Performance H ₂ S Sensors Based on Polymer Transistors. Chemistry - A European Journal, 2016, 22, 3654-3659.	1.7	37
116	Thiophene-Fused 1,10-Phenanthroline and Its Conjugated Polymers. Macromolecules, 2016, 49, 4088-4094.	2.2	22
117	Frontispiece: Investigation into the Sensing Process of High-Performance H2S Sensors Based on Polymer Transistors. Chemistry - A European Journal, 2016, 22, n/a-n/a.	1.7	0
118	Efficient polymer solar cells processed by environmentally friendly halogen-free solvents. RSC Advances, 2016, 6, 39074-39079.	1.7	11
119	Enhancing the power conversion efficiency of polymer solar cells to 9.26% by a synergistic effect of fluoro and carboxylate substitution. Journal of Materials Chemistry A, 2016, 4, 8097-8104.	5.2	39
120	1,8-Naphthalimide-based nonfullerene acceptors for wide optical band gap polymer solar cells with an ultrathin active layer thickness of 35 nm. Journal of Materials Chemistry C, 2016, 4, 5656-5663.	2.7	42
121	A femtosecond transient absorption study of charge photogeneration and recombination dynamics in photovoltaic polymers with different side-chain linkages. Nanoscale, 2016, 8, 18390-18399.	2.8	4
122	Side chain effect of nonfullerene acceptors on the photovoltaic performance of wide band gap polymer solar cells. Synthetic Metals, 2016, 220, 578-584.	2.1	13
123	An effective way to reduce energy loss and enhance open-circuit voltage in polymer solar cells based on a diketopyrrolopyrrole polymer containing three regular alternating units. Journal of Materials Chemistry A, 2016, 4, 13265-13270.	5.2	41
124	Perspective of a new trend in organic photovoltaic: ternary blend polymer solar cells. Science China Materials, 2016, 59, 444-458.	3.5	37
125	Ternaryâ€Blend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance. Advanced Materials, 2016, 28, 9559-9566.	11.1	267
126	Dibenzopyran-Based Wide Band Gap Conjugated Copolymers: Structural Design and Application for Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 31348-31358.	4.0	24

#	Article	IF	CITATIONS
127	Elimination of the J–V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative. Journal of Materials Chemistry A, 2016, 4, 17649-17654.	5.2	24
128	Highly Efficient Planar Perovskite Solar Cells Via Interfacial Modification with Fullerene Derivatives. Small, 2016, 12, 1098-1104.	5.2	107
129	Effect of bifurcation point of alkoxy side chains on photovoltaic performance of 5-alkoxy-6-fluorobenzo[c][1,2,5]thiadiazole-based conjugated polymers. Solar Energy Materials and Solar Cells, 2016, 154, 42-48.	3.0	5
130	1,8-Naphthalimide-Based Planar Small Molecular Acceptor for Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 5475-5483.	4.0	80
131	4-Alkyl-3,5-difluorophenyl-Substituted Benzodithiophene-Based Wide Band Gap Polymers for High-Efficiency Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3686-3692.	4.0	75
132	A nonfullerene acceptor for wide band gap polymer based organic solar cells. Chemical Communications, 2016, 52, 469-472.	2.2	48
133	Novel dithienosilole-based conjugated copolymers and their application in bulk heterojunction solar cells. Polymer Chemistry, 2016, 7, 319-329.	1.9	9
134	A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. Journal of Materials Chemistry C, 2015, 3, 6979-6985.	2.7	41
135	High-Efficiency Large-Bandgap Material for Polymer Solar Cells. Macromolecular Rapid Communications, 2015, 36, 84-89.	2.0	19
136	Evaluating the photovoltaic properties of two conjugated polymers synthesized by Suzuki polycondensation and direct C-H activation. Science China Chemistry, 2015, 58, 286-293.	4.2	16
137	Reversible Luminescence Switching of an Organic Solid: Controllable On–Off Persistent Room Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion. Advanced Optical Materials, 2015, 3, 1184-1190.	3.6	173
138	Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra. Macromolecular Rapid Communications, 2015, 36, 1348-1353.	2.0	12
139	Side Chain Influence on the Morphology and Photovoltaic Performance of 5-Fluoro-6-alkyloxybenzothiadiazole and Benzodithiophene Based Conjugated Polymers. ACS Applied Materials & Interfaces, 2015, 7, 10710-10717.	4.0	38
140	Synthesis and application of benzooxadiazole-based conjugated polymers in high performance phototransistors. Journal of Materials Chemistry C, 2015, 3, 12083-12089.	2.7	5
141	Enhancing the performance of polymer solar cells by tuning the drying process of blend films via changing side chains and using solvent additives. Journal of Materials Chemistry C, 2015, 3, 9670-9677.	2.7	7
142	Enhancing the Photovoltaic Performance by Tuning the Morphology of Polymer:PC ₇₁ BM Blends with a Commercially Available Nucleating Agent. ACS Applied Materials & Interfaces, 2015, 7, 18924-18929.	4.0	8
143	Benzothiadiazole based conjugated polymers for high performance polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20195-20200.	5.2	52
144	Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. Journal of the American Chemical Society, 2015, 137, 11976-11983.	6.6	184

#	Article	IF	CITATIONS
145	The side chain effect on difluoro-substituted dibenzo[a,c]phenazine based conjugated polymers as donor materials for high efficiency polymer solar cells. Polymer Chemistry, 2015, 6, 1613-1618.	1.9	17
146	Spin-coated Ag nanoparticles onto ITO substrates for efficient improvement of polymer solar cell performance. Journal of Materials Chemistry C, 2015, 3, 1319-1324.	2.7	10
147	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.	2.7	27
148	9-Arylidene-9 <i>H</i> -Fluorene-Containing Polymers for High Efficiency Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 1601-1607.	4.0	31
149	Engineering the band gap and energy level of conjugated polymers using a second acceptor unit. Polymer Chemistry, 2014, 5, 5037-5045.	1.9	11
150	5-Alkyloxy-6-fluorobenzo[<i>c</i>][1,2,5]thiadiazole- and Silafluorene-Based D–A Alternating Conjugated Polymers: Synthesis and Application in Polymer Photovoltaic Cells. Macromolecules, 2014, 47, 4645-4652.	2.2	47
151	Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Science Bulletin, 2013, 58, 2723-2727.	1.7	34
152	Synthesis of thiophene-containing conjugated polymers from 2,5-thiophenebis(boronic ester)s by Suzuki polycondensation. Polymer Chemistry, 2013, 4, 895.	1.9	18
153	Ethynyleneâ€containing donor–acceptor alternating conjugated polymers: Synthesis and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 383-393.	2.5	16
154	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.	1.9	31
155	Novel isoindigo-based conjugated polymers for solar cells and field effect transistors. Polymer Chemistry, 2013, 4, 3563.	1.9	30
156	Switching the emission of tetrakis(4-methoxyphenyl)ethylene among three colors in the solid state. New Journal of Chemistry, 2013, 37, 1696.	1.4	59
157	Triindole-cored star-shaped molecules for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 7657.	5.2	53
158	6,7-dialkoxy-2,3-diphenylquinoxaline based conjugated polymers for solar cells with high open-circuit voltage. Chinese Journal of Polymer Science (English Edition), 2013, 31, 901-911.	2.0	28
159	Polymer Photovoltaic Cells Based on Polymethacrylate Bearing Semiconducting Side Chains. Macromolecular Rapid Communications, 2012, 33, 2097-2102.	2.0	5
160	Self-assembly of cationic pyrene nanotubes. Journal of Materials Chemistry, 2012, 22, 4927.	6.7	26
161	Reversible Switching Emissions of Tetraphenylethene Derivatives among Multiple Colors with Solvent Vapor, Mechanical, and Thermal Stimuli. Journal of Physical Chemistry C, 2012, 116, 21967-21972.	1.5	179
162	Malachite Green Derivative–Functionalized Single Nanochannel: Lightâ€andâ€pH Dualâ€Driven Ionic Gating (Adv. Mater. 46/2012). Advanced Materials, 2012, 24, 6192-6192.	11.1	0

#	Article	IF	CITATIONS
163	Dibenzothiophene-Based Planar Conjugated Polymers for High Efficiency Polymer Solar Cells. Macromolecules, 2012, 45, 7843-7854.	2.2	45
164	Synthesis of polyfluorenes bearing lateral pyreneterminated alkyl chains for dispersion of single-walled carbon nanotubes. Chinese Journal of Polymer Science (English Edition), 2012, 30, 405-414.	2.0	8
165	Stable superhydrophobic fluorine containing polyfluorenes. Chinese Journal of Polymer Science (English Edition), 2012, 30, 308-315.	2.0	14
166	9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells. Macromolecules, 2011, 44, 7617-7624.	2.2	99
167	Siloleâ€containing polymers for highâ€efficiency polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 4267-4274.	2.5	40
168	Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 948-955.	1.1	13
169	Conjugated polymers with broad absorption: Synthesis and application in polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 2571-2578.	2.5	46
170	Enhancement of two-photon absorption cross section and singlet-oxygen generation in porphyrin-cored star polymers. Science in China Series B: Chemistry, 2009, 52, 56-63.	0.8	8
171	Tailoring Nanowire Network Morphology and Charge Carrier Mobility of Poly(3-hexylthiophene)/C ₆₀ Films. Journal of Physical Chemistry C, 2009, 113, 11385-11389.	1.5	17
172	A Planar Copolymer for High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2009, 131, 14612-14613.	6.6	407
173	Hyperbranched polymer-cored star polyfluorenes as blue light-emitting materials. Science Bulletin, 2008, 53, 2770-2776.	4.3	6
174	Synthesis and selfâ€assembly of amphiphilic dendronized conjugated polymers. Journal of Polymer Science Part A, 2008, 46, 574-584.	2.5	20
175	Conjugated polymers containing electronâ€transporting, holeâ€transporting, and lightâ€emitting units in the polymer main chain. Journal of Polymer Science Part A, 2008, 46, 1349-1356.	2.5	28
176	Synthesis of porphyrinâ€embedded dendronized polymers by Suzuki polycondensation. Journal of Polymer Science Part A, 2008, 46, 4030-4037.	2.5	14
177	Tris[tri(2â€thienyl)phosphine]palladium as the catalyst precursor for thiopheneâ€based Suzukiâ€Miyaura crosscoupling and polycondensation. Journal of Polymer Science Part A, 2008, 46, 4556-4563.	2.5	29
178	The morphology and photoelectronic properties of poly(9,9′â€dioctylfluorene)/ethyl yanoethyl cellulose blends. Journal of Applied Polymer Science, 2007, 106, 1390-1397.	1.3	4
179	Unusual Aggregation of Nanosized Six-Arm Star Oligofluorenes. Macromolecular Rapid Communications, 2007, 28, 1017-1023.	2.0	14
180	Reversible Thermally Responsive and Luminescent Coil–Rod–Coil Triblock Copolymers. Macromolecular Rapid Communications, 2007, 28, 1003-1009.	2.0	41

#	Article	IF	CITATIONS
181	Tuning the optical properties of hyperbranched polymers through the modification of the end groups. Journal of Polymer Science Part A, 2007, 45, 111-124.	2.5	35
182	Synthesis of hyperbranched polymers with precise conjugation length. Journal of Polymer Science Part A, 2007, 45, 1084-1092.	2.5	19
183	Synthesis and characterization of conjugated triblock copolymers. Journal of Polymer Science Part A, 2007, 45, 2410-2424.	2.5	27
184	Synthesis and characterization of star polyfluorenes with a C60 core. Journal of Polymer Science Part A, 2007, 45, 4696-4706.	2.5	8
185	Studies of Green Emission in Polyfluorenes Using a Model Polymer. Polymer Journal, 2007, 39, 1345-1350.	1.3	9
186	Synthesis and photocurrent response of porphyrin-containing conjugated polymers. Science Bulletin, 2006, 51, 1287-1295.	1.7	5
187	Photophysical and Electroluminescent Properties of Hyperbranched Polyfluorenes. Macromolecular Chemistry and Physics, 2006, 207, 870-878.	1.1	41
188	Synthesis and Optical Properties of Dendronized Porphyrin Polymers. Macromolecular Rapid Communications, 2006, 27, 1355-1361.	2.0	22
189	Star Polyfluorenes with a Triphenylamine-Based Core. Macromolecular Rapid Communications, 2005, 26, 1064-1069.	2.0	21
190	Synthesis, Optical, and Electrochemical Properties of the High-Molecular-Weight Conjugated Polycarbazoles. Macromolecular Rapid Communications, 2005, 26, 1704-1710.	2.0	49
191	A Facile Synthetic Route to Monodisperse Asymmetrical Oligo(phenyleneâ€ethynylene)s. Synthetic Communications, 2005, 35, 1391-1402.	1.1	3
192	Synthesis of Aryl/Alkyl Building Blocks for Dendrimer and Hyperbranched Polymer Synthesis. Organic Letters, 2004, 6, 667-669.	2.4	14
193	"AB2+ AC2―approach to hyperbranched polymers with a high degree of branching. Chemical Communications, 2003, , 2354-2355.	2.2	19