Andrey Konevega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7240989/publications.pdf

Version: 2024-02-01

		236925	206112	
54	2,828	25	48	
papers	citations	h-index	g-index	
59	50	59	3165	

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Ribosomal protein S18 acetyltransferase Riml is responsible for the acetylation of elongation factor Tu. Journal of Biological Chemistry, 2022, 298, 101914.	3.4	11
2	Cold and distant: structural features of the nucleoprotein complex of a cold-adapted influenza A virus strain. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4375-4384.	3.5	1
3	Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation. Frontiers in Microbiology, 2021, 12, 618857.	3.5	11
4	Binding and Action of Triphenylphosphonium Analog of Chloramphenicol upon the Bacterial Ribosome. Antibiotics, 2021, 10, 390.	3.7	16
5	Triphenilphosphonium Analogs of Chloramphenicol as Dual-Acting Antimicrobial and Antiproliferating Agents. Antibiotics, 2021, 10, 489.	3.7	11
6	The dynamic cycle of bacterial translation initiation factor IF3. Nucleic Acids Research, 2021, 49, 6958-6970.	14.5	3
7	RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system. Nucleic Acids Research, 2021, 49, 8355-8369.	14.5	11
8	Differential Contribution of Protein Factors and 70S Ribosome to Elongation. International Journal of Molecular Sciences, 2021, 22, 9614.	4.1	3
9	RNA Binding by Plant Serpins in vitro. Biochemistry (Moscow), 2021, 86, 1214-1224.	1.5	2
10	Dual Targeting of Cancer Cells with DARPin-Based Toxins for Overcoming Tumor Escape. Cancers, 2020, 12, 3014.	3.7	34
11	Insights into the improved macrolide inhibitory activity from the high-resolution cryo-EM structure of dirithromycin bound to the <i>E. coli</i> 70S ribosome. Rna, 2020, 26, 715-723.	3.5	15
12	Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS ONE, 2020, 15, e0227949.	2.5	106
13	How the initiating ribosome copes with ppGpp to translate mRNAs. PLoS Biology, 2020, 18, e3000593.	5.6	37
14	Evaluation of immune and chemical precipitation methods for plasma exosome isolation. PLoS ONE, 2020, 15, e0242732.	2.5	23
15	Evaluation of immune and chemical precipitation methods for plasma exosome isolation., 2020, 15, e0242732.		0
16	Evaluation of immune and chemical precipitation methods for plasma exosome isolation., 2020, 15, e0242732.		0
17	Evaluation of immune and chemical precipitation methods for plasma exosome isolation., 2020, 15, e0242732.		0
18	Evaluation of immune and chemical precipitation methods for plasma exosome isolation., 2020, 15, e0242732.		0

#	Article	IF	Citations
19	Structure of Dirithromycin Bound to the Bacterial Ribosome Suggests New Ways for Rational Improvement of Macrolides. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
20	Binding and Action of Amino Acid Analogs of Chloramphenicol upon the Bacterial Ribosome. Journal of Molecular Biology, 2018, 430, 842-852.	4.2	47
21	The ribosomal A-site finger is crucial for binding and activation of the stringent factor RelA. Nucleic Acids Research, 2018, 46, 1973-1983.	14.5	53
22	Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state. Nucleic Acids Research, 2017, 45, 7507-7514.	14.5	35
23	Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nature Chemical Biology, 2017, 13, 1129-1136.	8.0	50
24	Single-particle cryo-EM of macromolecular complexes at near-atomic resolution. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1297-C1297.	0.1	0
25	Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. Journal of Global Health, 2017, 7, 020304.	2.7	29
26	The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature, 2016, 540, 80-85.	27.8	93
27	New fluorescent macrolide derivatives for studying interactions of antibiotics and their analogs with the ribosomal exit tunnel. Biochemistry (Moscow), 2016, 81, 1163-1172.	1.5	12
28	Recognition of Specific Uridines in tRNA Substrates by Dihydrouridine Synthases. Biophysical Journal, 2016, 110, 239a.	0.5	0
29	Structure of the E. coli ribosome–EF-Tu complex at <3Âà resolution by Cs-corrected cryo-EM. Nature, 2015, 520, 567-570.	27.8	338
30	Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6033-6037.	7.1	38
31	GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. EMBO Journal, 2014, 33, 1073-1085.	7.8	81
32	Amicoumacin A Inhibits Translation by Stabilizing mRNA Interaction with the Ribosome. Molecular Cell, 2014, 56, 531-540.	9.7	73
33	High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nature Communications, 2014, 5, 4459.	12.8	28
34	A Kinetic Safety Gate Controlling the Delivery of Unnatural Amino Acids to the Ribosome. Journal of the American Chemical Society, 2013, 135, 17031-17038.	13.7	53
35	tRNA tK ^{UUU} , tQ ^{UUG} , and tE ^{UUC} wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12289-12294.	7.1	138
36	Thermodynamics of the GTP-GDP-operated Conformational Switch of Selenocysteine-specific Translation Factor SelB. Journal of Biological Chemistry, 2012, 287, 27906-27912.	3.4	22

3

#	Article	IF	Citations
37	Distortion of tRNA upon Near-cognate Codon Recognition on the Ribosome. Journal of Biological Chemistry, 2011, 286, 8158-8164.	3.4	18
38	The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of <i>Escherichia coli</i> ribosome. FEBS Letters, 2011, 585, 3073-3078.	2.8	18
39	Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2979-2986.	4.0	120
40	Functions of elongation factor G in translocation and ribosome recycling., 2011,, 329-338.		8
41	The ribosomeâ€bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Reports, 2010, 11, 312-316.	4.5	86
42	Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature, 2010, 466, 329-333.	27.8	400
43	Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination. Rna, 2010, 16, 1848-1853.	3.5	23
44	Thermodynamic and Kinetic Framework of Selenocysteyl-tRNASec Recognition by Elongation Factor SelB. Journal of Biological Chemistry, 2010, 285, 3014-3020.	3.4	38
45	The crystal structure of unmodified tRNA Phe from Escherichia coli. Nucleic Acids Research, 2010, 38, 4154-4162.	14.5	85
46	Kinetic Checkpoint at a Late Step in Translation Initiation. Molecular Cell, 2008, 30, 712-720.	9.7	115
47	Structure of ratcheted ribosomes with tRNAs in hybrid states. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16924-16927.	7.1	161
48	Towards understanding selenocysteine incorporation into bacterial proteins. Biological Chemistry, 2007, 388, 1061-1067.	2.5	16
49	Transient Kinetics, Fluorescence, and FRET in Studies of Initiation of Translation in Bacteria. Methods in Enzymology, 2007, 430, 1-30.	1.0	110
50	Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nature Structural and Molecular Biology, 2007, 14, 318-324.	8.2	87
51	Effect of modification of tRNA nucleotide 37 on the tRNA interaction with the A and P sites of the Escherichia coli 70S ribosome. Molecular Biology, 2006, 40, 597-610.	1.3	15
52	Single-step purification of specific tRNAs by hydrophobic tagging. Analytical Biochemistry, 2006, 356, 148-150.	2.4	20
53	Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. Rna, 2004, 10, 90-101.	3.5	106
54	Title is missing!. Molecular Biology, 2003, 37, 110-115.	1.3	1