
Richard Ivell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/724047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression and Role of INSL3 in the Fetal Testis. Frontiers in Endocrinology, 2022, 13, 868313.	3.5	8
2	Association of age, hormonal, and lifestyle factors with the Leydig cell biomarker INSL3 in aging men from the European Male Aging Study cohort. Andrology, 2022, 10, 1328-1338.	3.5	9
3	Male seminal parameters are not associated with Leydig cell functional capacity in men. Andrology, 2021, 9, 1126-1136.	3.5	8
4	The Physiology of Reproduction – Quo vadis?. Frontiers in Physiology, 2021, 12, 650550.	2.8	7
5	Maternal Exposure to Dibutyl Phthalate (DBP) or Diethylstilbestrol (DES) Leads to Long-Term Changes in Hypothalamic Gene Expression and Sexual Behavior. International Journal of Molecular Sciences, 2021, 22, 4163.	4.1	16
6	Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. General and Comparative Endocrinology, 2020, 299, 113583.	1.8	12
7	Thresholds and Endocrine Disruptors: An Endocrine Society Policy Perspective. Journal of the Endocrine Society, 2020, 4, bvaa085.	0.2	21
8	Effects of acute hCG stimulation on serum INSL3 and 25â€OH vitamin D in Klinefelter syndrome. Andrology, 2020, 8, 1720-1727.	3.5	6
9	Insulin-Like Peptide 3 (INSL3). , 2019, , 793-806.		0
10	Prepubertal nutrition alters Leydig cell functional capacity and timing of puberty. PLoS ONE, 2019, 14, e0225465.	2.5	15
11	Insulin-like peptide 3 (INSL3) is a major regulator of female reproductive physiology. Human Reproduction Update, 2018, 24, 639-651.	10.8	42
12	Perspective: A Neuro-Hormonal Systems Approach to Understanding the Complexity of Cryptorchidism Susceptibility. Frontiers in Endocrinology, 2018, 9, 401.	3.5	12
13	Testicular Function and Bone in Young Men with Severe Childhood-Onset Obesity. Hormone Research in Paediatrics, 2018, 89, 442-449.	1.8	7
14	Amniotic Fluid INSL3 Measured During the Critical Time Window in Human Pregnancy Relates to Cryptorchidism, Hypospadias, and Phthalate Load: A Large Case–Control Study. Frontiers in Physiology, 2018, 9, 406.	2.8	33
15	Relaxinâ€like peptides in male reproduction – a human perspective. British Journal of Pharmacology, 2017, 174, 990-1001.	5.4	43
16	Neohormones in milk. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 419-425.	4.7	7
17	Endocrinology of the Fetal Testis. Endocrinology, 2017, , 245-272.	0.1	6
18	Research in Reproduction: Challenges, Needs, and Opportunities. Frontiers in Physiology, 2017, 8, 46.	2.8	6

#	Article	IF	CITATIONS
19	Relaxin-Family Peptide Receptors 1 and 2 Are Fully Functional in the Bovine. Frontiers in Physiology, 2017, 8, 359.	2.8	17
20	Male Seminal Relaxin Contributes to Induction of the Post-mating Cytokine Response in the Female Mouse Uterus. Frontiers in Physiology, 2017, 8, 422.	2.8	11
21	Theca Cell INSL3 and Steroids Together Orchestrate the Growing Bovine Antral Follicle. Frontiers in Physiology, 2017, 8, 1033.	2.8	14
22	Endocrinology of the Fetal Testis. Endocrinology, 2017, , 1-28.	0.1	0
23	Perfluorooctane Sulfonate Concentrations in Amniotic Fluid, Biomarkers of Fetal Leydig Cell Function, and Cryptorchidism and Hypospadias in Danish Boys (1980–1996). Environmental Health Perspectives, 2016, 124, 151-156.	6.0	48
24	Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union. Environmental Health Perspectives, 2016, 124, 1497-1503.	6.0	37
25	EU regulation of endocrine disruptors: a missed opportunity. Lancet Diabetes and Endocrinology,the, 2016, 4, 649-650.	11.4	4
26	Science-based regulation of endocrine disrupting chemicals in Europe: which approach?. Lancet Diabetes and Endocrinology,the, 2016, 4, 643-646.	11.4	13
27	The Male Fetal Biomarker INSL3 Reveals Substantial Hormone Exchange between Fetuses in Early Pig Gestation. PLoS ONE, 2016, 11, e0152689.	2.5	7
28	Relaxin. , 2016, , 3982-3984.		0
29	Longitudinal assessment of circulating insulin-like peptide 3Âlevels in healthy peripubertal girls. Fertility and Sterility, 2015, 103, 780-786.e1.	1.0	12
30	Amniotic Fluid Phthalate Levels and Male Fetal Gonad Function. Epidemiology, 2015, 26, 91-99.	2.7	94
31	Relaxin. , 2015, , 1-3.		0
32	Proper Application of Antibodies for Immunohistochemical Detection: Antibody Crimes and How to Prevent Them. Endocrinology, 2014, 155, 676-687.	2.8	56
33	Insulin-Like Factor 3 and the HPG Axis in the Male. Frontiers in Endocrinology, 2014, 5, 6.	3.5	77
34	Insulin-like factor 3 as a monitor of endocrine disruption. Reproduction, 2014, 147, R87-R95.	2.6	36
35	Cryptorchidism in the Orl Rat Is Associated with Muscle Patterning Defects in the Fetal Gubernaculum and Altered Hormonal Signaling1. Biology of Reproduction, 2014, 91, 41.	2.7	20
36	Serum levels of insulin-like factor 3, anti-Müllerian hormone, inhibin B, and testosterone during pubertal transition in healthy boys: a longitudinal pilot study. Reproduction, 2014, 147, 529-535.	2.6	37

#	Article	IF	CITATIONS
37	Regulation of the reproductive cycle and early pregnancy by relaxin family peptides. Molecular and Cellular Endocrinology, 2014, 382, 472-479.	3.2	34
38	Non-classical mechanisms of steroid sensing in the ovary: Lessons from the bovine oxytocin model. Molecular and Cellular Endocrinology, 2014, 382, 466-471.	3.2	9
39	Neohormones as biomarkers ofÂreproductive health. Fertility and Sterility, 2013, 99, 1153-1160.	1.0	25
40	Circulating insulin-like factor 3 (INSL3) in healthy and infertile women. Human Reproduction, 2013, 28, 3093-3102.	0.9	47
41	Ovarian Expression of Insulin-Like Peptide 3 (INSL3) and Its Receptor (RXFP2) During Development of Bovine Antral Follicles and Corpora Lutea and Measurement of Circulating INSL3 Levels During Synchronized Estrous Cycles. Endocrinology, 2013, 154, 1897-1906.	2.8	41
42	Functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1426-35.	7.1	63
43	INSL3 as a Biomarker of Leydig Cell Functionality. Biology of Reproduction, 2013, 88, 147-147.	2.7	132
44	Brief maternal exposure of rats to the xenobiotics dibutyl phthalate or diethylstilbestrol alters adult-type Leydig cell development in male offspring. Asian Journal of Andrology, 2013, 15, 261-268.	1.6	21
45	Phthalates and Perfluorooctanesulfonic Acid in Human Amniotic Fluid: Temporal Trends and Timing of Amniocentesis in Pregnancy. Environmental Health Perspectives, 2012, 120, 897-903.	6.0	113
46	Models of in vitro spermatogenesis. Spermatogenesis, 2012, 2, 32-43.	0.8	36
47	The endocrine disruptors dibutyl phthalate (DBP) and diethylstilbestrol (DES) influence Leydig cell regeneration following ethane dimethane sulphonate treatment of adult male rats. Journal of Developmental and Physical Disabilities, 2012, 35, 353-363.	3.6	31
48	Exposure of Adult Rats to Phthalate (DBP) or Estrogen (DES) Causes a Shift in the Adult-Type Leydig Cell Proliferation/Differentiation Trajectory Biology of Reproduction, 2012, 87, 78-78.	2.7	4
49	INSL3 in the Ruminant: A Powerful Indicator of Gender- and Genetic-Specific Feto-Maternal Dialogue. PLoS ONE, 2011, 6, e19821.	2.5	45
50	Biological role and clinical significance of insulin-like peptide 3. Current Opinion in Endocrinology, Diabetes and Obesity, 2011, 18, 210-216.	2.3	44
51	The special systems biology of the sperm. Biochemical Journal, 2011, 436, e3-e5.	3.7	3
52	Relaxin family peptides in the male reproductive systema critical appraisal. Molecular Human Reproduction, 2011, 17, 71-84.	2.8	44
53	Relaxin. , 2011, , 3223-3225.		0
54	Maternal Exposure to Phthalate and/or Diethylstilbestrol Leads to Long-Term Changes in Hypothalamic Gene Expression and Adult Behavior in Male and Female Offspring Biology of Reproduction, 2011, 85, 790-790.	2.7	0

#	Article	IF	CITATIONS
55	The evolutionary history of testicular externalization and the origin of the scrotum. Journal of Biosciences, 2010, 35, 27-37.	1.1	43
56	Dynamics of INSL3 Peptide Expression in the Rodent Testis1. Biology of Reproduction, 2009, 81, 480-487.	2.7	84
57	Evolution and Male Fertility: Lessons from the Insulin-Like Factor 6 Gene (Insl6). Endocrinology, 2009, 150, 3986-3990.	2.8	11
58	Biology of insulin-like factor 3 in human reproduction. Human Reproduction Update, 2009, 15, 463-476.	10.8	122
59	Demographic, physical and lifestyle factors associated with androgen status: the Florey Adelaide Male Ageing Study (FAMAS). Clinical Endocrinology, 2009, 71, 261-272.	2.4	41
60	Seminiferous tubule transfection in vitro to define post-meiotic gene regulation. Reproductive Biology and Endocrinology, 2009, 7, 67.	3.3	8
61	Insulin-like factor 3 levels in amniotic fluid of human male fetuses. Human Reproduction, 2008, 23, 1180-1186.	0.9	62
62	Relaxin signalling in primary cultures of human myometrial cells. Molecular Human Reproduction, 2008, 14, 603-611.	2.8	28
63	Insulin-Like Factor 3 Levels in Cord Blood and Serum from Children: Effects of Age, Postnatal Hypothalamic-Pituitary-Gonadal Axis Activation, and Cryptorchidism. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4020-4027.	3.6	116
64	Relaxin signalling in THP-1 cells uses a novel phosphotyrosine-dependent pathway. Molecular and Cellular Endocrinology, 2007, 272, 1-13.	3.2	22
65	A novel molecular assay to discriminate transcriptional effects caused by xenoestrogens. Molecular and Cellular Endocrinology, 2007, 276, 45-54.	3.2	10
66	Lifestyle impact and the biology of the human scrotum. Reproductive Biology and Endocrinology, 2007, 5, 15.	3.3	124
67	Diverse Signalling Mechanisms Used by Relaxin in Natural Cells and Tissues: The Evolution of a "Neohormone― Advances in Experimental Medicine and Biology, 2007, 612, 26-33.	1.6	8
68	Insulin-Like Peptide 3 in Leydig Cells. , 2007, , 279-289.		2
69	Differentiation-specific action of orphan nuclear receptor NR5A1 (SF-1): transcriptional regulation in luteinizing bovine theca cells. Reproductive Biology and Endocrinology, 2006, 4, 64.	3.3	11
70	Neohormone systems as exciting targets for drug development. Trends in Endocrinology and Metabolism, 2006, 17, 123.	7.1	21
71	Cellular origins of testicular dysgenesis in rats exposed in utero to di(n-butyl) phthalate. Journal of Developmental and Physical Disabilities, 2006, 29, 148-154.	3.6	76
72	Peripheral INSL3 concentrations decline with age in a large population of Australian men. Journal of Developmental and Physical Disabilities, 2006, 29, 618-626.	3.6	117

#	Article	IF	CITATIONS
73	Expression of the Insulin-Like Peptide 3 (INSL3) Hormone-Receptor (LGR8) System in the Testis1. Biology of Reproduction, 2006, 74, 945-953.	2.7	110
74	International Union of Pharmacology LVII: Recommendations for the Nomenclature of Receptors for Relaxin Family Peptides. Pharmacological Reviews, 2006, 58, 7-31.	16.0	300
75	Receptors for Relaxin Family Peptides. Annals of the New York Academy of Sciences, 2005, 1041, 61-76.	3.8	42
76	Relaxin Signaling from Natural Receptors. Annals of the New York Academy of Sciences, 2005, 1041, 280-287.	3.8	8
77	Insulin‣ike Factor 3: Where Are We Now?. Annals of the New York Academy of Sciences, 2005, 1041, 486-496.	3.8	37
78	Immunohistochemical Localization of Relaxin-Like Factor/Insulin-Like Peptide-3 in the Bovine Corpus Luteum. Annals of the New York Academy of Sciences, 2005, 1041, 506-509.	3.8	6
79	Expression of Insulin-Like Factor 3 Protein in the Rat Testis during Fetal and Postnatal Development and in Relation to Cryptorchidism Induced by in Utero Exposure to Di (n-Butyl) Phthalate. Endocrinology, 2005, 146, 4536-4544.	2.8	120
80	Development and Function of the Adult Generation of Leydig Cells in Mice with Sertoli Cell-Selective or Total Ablation of the Androgen Receptor. Endocrinology, 2005, 146, 4117-4126.	2.8	108
81	Constitutive regulation of the Insl3 gene in rat Leydig cells. Molecular and Cellular Endocrinology, 2005, 241, 10-20.	3.2	75
82	Phosphodiesterase 4 Inhibition Synergizes with Relaxin Signaling to Promote Decidualization of Human Endometrial Stromal Cells. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 324-334.	3.6	65
83	Targeted Deletion of the Epididymal Receptor HE6 Results in Fluid Dysregulation and Male Infertility. Molecular and Cellular Biology, 2004, 24, 8642-8648.	2.3	136
84	Trehalose Is a Potent PCR Enhancer: Lowering of DNA Melting Temperature and Thermal Stabilization of Taq Polymerase by the Disaccharide Trehalose. Clinical Chemistry, 2004, 50, 1256-1259.	3.2	100
85	Relaxin and Phosphodiesterases Collaborate during Decidualization. Annals of the New York Academy of Sciences, 2004, 1030, 479-492.	3.8	6
86	Post-meiotic gene products as targets for male contraception. Molecular and Cellular Endocrinology, 2004, 216, 65-74.	3.2	10
87	Amplified RNA degradation in T7-amplification methods results in biased microarray hybridizations. BMC Genomics, 2003, 4, 44.	2.8	55
88	Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reproductive Biology and Endocrinology, 2003, 1, 114.	3.3	65
89	The molecular basis of cryptorchidism. Molecular Human Reproduction, 2003, 9, 175-181.	2.8	130
90	Testis-Specific Expression of Rat Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Haploid Male Germ Cells1. Biology of Reproduction, 2003, 68, 699-707.	2.7	24

#	Article	IF	CITATIONS
91	Differentiation-Dependent Expression of 17β-Hydroxysteroid Dehydrogenase, Type 10, in the Rodent Testis: Effect of Aging in Leydig Cells. Endocrinology, 2003, 144, 3130-3137.	2.8	52
92	Intraadrenal Adrenocorticotropin Production in a Case of Bilateral Macronodular Adrenal Hyperplasia Causing Cushing's Syndrome. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3035-3042.	3.6	61
93	SPEER—A New Family of Testis-Specific Genes from the Mouse1. Biology of Reproduction, 2003, 68, 2044-2054.	2.7	35
94	Transcriptional Regulation of the Bovine Oxytocin Receptor Gene1. Biology of Reproduction, 2003, 68, 1015-1026.	2.7	30
95	Dynamic Changes in the Expression of Relaxin-Like Factor (Insl3), Cholesterol Side-Chain Cleavage Cytochrome P450, and 3β-Hydroxysteroid Dehydrogenase in Bovine Ovarian Follicles During Growth and Atresia1. Biology of Reproduction, 2002, 66, 934-943.	2.7	65
96	The changing face of Molecular Human Reproduction. Molecular Human Reproduction, 2002, 8, 1051-1052.	2.8	0
97	ENDOCRINOLOGY: This Hormone Has Been Relaxin' Too Long!. Science, 2002, 295, 637-638.	12.6	25
98	Reproductive Biology of the Relaxin-Like Factor (RLF/INSL3)1. Biology of Reproduction, 2002, 67, 699-705.	2.7	156
99	Relaxin peptides are new global players. Trends in Endocrinology and Metabolism, 2002, 13, 343-348.	7.1	86
100	A Highly Efficient Method for Long-Chain cDNA Synthesis Using Trehalose and Betaine. Analytical Biochemistry, 2002, 301, 168-174.	2.4	59
101	Bioactivity of recombinant prorelaxin from the marmoset monkey. Regulatory Peptides, 2001, 97, 139-146.	1.9	34
102	The Structure and Regulation of the Oxytocin Receptor. Experimental Physiology, 2001, 86, 289-296.	2.0	43
103	Secretion of Oxytocin in Pregnant and Parturient Cows: Corpus Luteum May Contribute to Plasma Oxytocin at Term1. Biology of Reproduction, 2001, 65, 1135-1141.	2.7	21
104	The Relaxin-Like Factor: from gene to physiology. , 2001, , 327-335.		1
105	The Relaxin-Like Factor (Insulin 3) is highly expressed in the ruminant ovary: A putative ruminant relaxin?. , 2001, , 349-356.		4
106	Characterization of preprorelaxin in a marsupial, the tammar wallaby Macropus eugenii. , 2001, , 59-62.		0
107	Relaxin signal transduction couples tyrosine phosphorylation to cAMP upregulation. , 2001, , 309-315.		3
108	Structure and expression of the mouse gene encoding the endozepine-like peptide from haploid male germ cells. FEBS Journal, 2000, 267, 5438-5449.	0.2	22

#	Article	IF	CITATIONS
109	Mammalian Mesotocin: cDNA Sequence and Expression of an Oxytocin-like Gene in a Macropodid Marsupial, the Tammar Wallaby. General and Comparative Endocrinology, 2000, 118, 187-199.	1.8	8
110	The Rat Endozepine-Like Peptide Gene Is Highly Expressed in Late Haploid Stages of Male Germ Cell Development1. Biology of Reproduction, 2000, 63, 763-768.	2.7	27
111	Progressive inactivation of the haploid expressed gene for the sperm-specific endozepine-like peptide (ELP) through primate evolution. Gene, 2000, 255, 335-345.	2.2	17
112	Normalization of RNA Hybridization Signals by Means of SYBR® Green II-Stained 28S or 18S Ribosomal RNA and a Phosphor Imager. BioTechniques, 1999, 26, 46-50.	1.8	29
113	Expression and Regulation of Relaxin-Like Factor Gene Transcripts in the Bovine Ovary: Differentiation-Dependent Expression in Theca Cell Cultures1. Biology of Reproduction, 1999, 61, 1090-1098.	2.7	52
114	Identification of Markers for Precursor and Leydig Cell Differentiation in the Adult Rat Testis Following Ethane Dimethyl Sulphonate Administration1. Biology of Reproduction, 1999, 60, 1437-1445.	2.7	54
115	Differential Splicing and Expression of the Relaxin-Like Factor Gene in Reproductive Tissues of the Marmoset Monkey (Callithrix jacchus)1. Biology of Reproduction, 1999, 60, 445-453.	2.7	52
116	Structure and expression of the rat relaxin-like factor (RLF) gene. Molecular Reproduction and Development, 1999, 54, 319-325.	2.0	68
117	Differential protein–DNA binding analysis identifies a novel enhancer element, US-1, involved in the upregulation of the oxytocin receptor gene in human myometrium at term. Molecular and Cellular Endocrinology, 1999, 148, 137-149.	3.2	8
118	The role of sex steroids in the oxytocin hormone system. Molecular and Cellular Endocrinology, 1999, 151, 95-101.	3.2	72
119	Cloning of bovine estrogen receptor beta (ERβ): expression of novel deleted isoforms in reproductive tissues. Molecular and Cellular Endocrinology, 1999, 152, 37-45.	3.2	37
120	Molecular Cloning of a Human MafF Homologue, Which Specifically Binds to the Oxytocin Receptor Gene in Term Myometrium. Biochemical and Biophysical Research Communications, 1999, 264, 86-92.	2.1	30
121	The physiology of ovarian oxytocin. Reproductive Medicine Review, 1999, 7, 11-25.	0.3	13
122	Relaxin-Like Factor (RLF). International Journal of Gynecological Pathology, 1999, 18, 163-168.	1.4	65
123	The Oxytocin Receptor. Results and Problems in Cell Differentiation, 1999, 26, 135-168.	0.7	13
124	Mesotocin Gene Expression and Evidence of Gene Duplication in the Tammar Wallaby. Annals of the New York Academy of Sciences, 1998, 839, 447-449.	3.8	4
125	The gene for the Alzheimer-associated beta-amyloid-binding protein (ERAB) is differentially expressed in the testicular Leydig cells of the azoospermic by w/wv mouse. FEBS Journal, 1998, 258, 53-60.	0.2	18
126	Molecular cloning and testicular expression of the gene transcripts encoding the murine multiubiquitin-chain-binding protein (Mcb1). Gene, 1998, 207, 19-24.	2.2	12

#	Article	IF	CITATIONS
127	The Molecular Basis of Oxytocin and Oxytocin Receptor Gene Expression in Reproductive Tissues. Advances in Experimental Medicine and Biology, 1998, 449, 297-306.	1.6	18
128	An Autocrine Progesterone Positive Feedback Loop Mediates Oxytocin Upregulation in Bovine Granulosa Cells during Luteinization. Endocrinology, 1997, 138, 5059-5062.	2.8	41
129	Cloning of a Human Epididymis-Specific mRNA, HE6, Encoding a Novel Member of the Seven Transmembrane-Domain Receptor Superfamily. DNA and Cell Biology, 1997, 16, 379-389.	1.9	84
130	Evidence for a Local Fetal Influence on Myometrial Oxytocin Receptors during Pregnancy in the Tammar Wallaby (Macropus eugenii)1. Biology of Reproduction, 1997, 56, 200-207.	2.7	41
131	Oxytocin and Oxytocin Receptor Expression in Reproductive Tissues of the Male Marmoset Monkey1. Biology of Reproduction, 1997, 56, 416-422.	2.7	74
132	Marsupial Relaxin: Complementary Deoxyribonucleic Acid Sequence and Gene Expression in the Female and Male Tammar Wallaby, Macropus Eugenii 1. Biology of Reproduction, 1997, 57, 119-127.	2.7	25
133	The mouse relaxin-like factor gene and its promoter are located within the 3′ region of the JAK3 genomic sequence. FEBS Letters, 1997, 419, 186-190.	2.8	37
134	A genomic element within the third intron of the human oxytocin receptor gene may be involved in transcriptional suppression. Molecular and Cellular Endocrinology, 1997, 135, 129-138.	3.2	73
135	An Autocrine Progesterone Positive Feedback Loop Mediates Oxytocin Upregulation in Bovine Granulosa Cells during Luteinization. Endocrinology, 1997, 138, 5059-5062.	2.8	12
136	A novel endozepine-like peptide (ELP) is exclusively expressed in male germ cells. Molecular and Cellular Endocrinology, 1996, 122, 69-80.	3.2	26
137	Sertoli Cell Lines Established fromH-2Kb-tsA58 Transgenic Mice Differentially Regulate the Expression of Cell-Specific Genes. Experimental Cell Research, 1996, 225, 411-421.	2.6	57
138	Oxytocin receptors in bovine cervix during pregnancy and parturition: Gene expression and cellular localization. American Journal of Obstetrics and Gynecology, 1996, 175, 1654-1660.	1.3	15
139	Relaxin-Like Factor Gene is Highly Expressed in the Bovine Ovary of the Cycle and Pregnancy: Sequence and Messenger Ribonucleic Acid Analysis1. Biology of Reproduction, 1996, 55, 1452-1457.	2.7	108
140	Novel splicing variants of the human thyrotropin receptor encode truncated polypeptides without a membrane-spanning domain. Endocrine, 1995, 3, 233-240.	2.2	15
141	Structure and Expression of the Bovine Oxytocin Receptor Gene. DNA and Cell Biology, 1995, 14, 1037-1048.	1.9	58
142	Oxytocin and Oxytocin Receptor Gene Expression in the Reproductive Tract of the Pregnant Cow: Rescue of Luteal Oxytocin Production at Term1. Biology of Reproduction, 1995, 53, 553-560.	2.7	48
143	Molecular Cloning and Characterization of a Novel Human Sperm Antigen (HE2) Specifically Expressed in the Proximal Epididymis1. Biology of Reproduction, 1994, 50, 516-525.	2.7	77
144	Structure of the Alpha-Inhibin Gene and its Regulation in the Ruminant Gonad: Inverse Relationship to Oxytocin Gene Expression1. Biology of Reproduction, 1994, 50, 401-412.	2.7	15

#	Article	IF	CITATIONS
145	Major human epididymis-specific gene product, HE3, is the first representative of a novel gene family. Molecular Reproduction and Development, 1994, 37, 130-137.	2.0	23
146	The Orphan Receptor SF-1 Binds to the COUP-Like Element in the Promoter of the Actively Transcribed Oxytocin Gene. Journal of Neuroendocrinology, 1994, 6, 1-4.	2.6	24
147	A major mRNA of the human epididymal principal cells, HE5, encodes the leucocyte differentiation CDw52 antigen peptide backbone. Molecular Reproduction and Development, 1993, 34, 8-15.	2.0	88
148	Region-specific variation of gene expression in the human epididymis as revealed by in situ hybridization with tissue-specific cDNAs. Molecular Reproduction and Development, 1993, 34, 16-24.	2.0	90
149	Vasopressinergic Innervation of the Bovine Pineal Gland: Is There a Local Source for Arginine Vasopressin?. Molecular and Cellular Neurosciences, 1993, 4, 47-54.	2.2	21
150	The regulation of neurohypophyseal peptide gene expression in gonadal tissues. Regulatory Peptides, 1993, 45, 263-267.	1.9	4
151	Vasopressin biosynthesis in rodent Leydig cells. Molecular and Cellular Endocrinology, 1992, 89, 59-66.	3.2	19
152	The COUP transcription factor (COUP-TF) is directly involved in the regulation of oxytocin gene expression in luteinizing bovine granulosa cells. Biochemical and Biophysical Research Communications, 1992, 189, 496-503.	2.1	30
153	The Chicken Vasotocin Gene. Journal of Neuroendocrinology, 1992, 4, 505-513.	2.6	36
154	Comparison of the estrogen responsiveness of the rat and bovine oxytocin gene promoters. Biochemical and Biophysical Research Communications, 1991, 175, 117-122.	2.1	51
155	Mapping of the Bovine Oxytocin Gene Control Region: Identification of Binding Sites for Luteal Nuclear Proteins in the 5' Non-Coding Region of the Gene. Journal of Neuroendocrinology, 1991, 3, 539-549.	2.6	29
156	The Molecular Biology of Vasopressin and Oxytocin Genes. Journal of Neuroendocrinology, 1991, 3, 583-585.	2.6	9
157	Vasopressin and Oxytocin Gene Expression in Rat Testis*. Endocrinology, 1991, 128, 2118-2128.	2.8	92
158	Testicular Oxytocin Gene Expression in Seminiferous Tubules of Cattle and Transgenic Mice*. Endocrinology, 1991, 128, 2110-2117.	2.8	59
159	A Major Human Epididymis-Specific cDNA Encodes a Protein with Sequence Homology to Extracellular Proteinase Inhibitors1. Biology of Reproduction, 1991, 45, 350-357.	2.7	342
160	Baboon Corpus Luteum Oxytocin. , 1991, , 374-379.		1
161	Expression of the Oxytocin and Vasopressin Genes in Human and Baboon Gonadal Tissues*. Endocrinology, 1990, 127, 2990-2996.	2.8	68
162	The regulation of oxytocin gene expression in early bovine luteal cells. Molecular and Cellular Endocrinology, 1990, 70, 81-88.	3.2	19

#	Article	IF	CITATIONS
163	Expression of the human relaxin gene in the corpus luteum of the menstrual cycle and in the prostate. Molecular and Cellular Endocrinology, 1989, 66, 251-255.	3.2	93
164	Proopiomelanocortin cDNA sequence from the bovine ovary indicate alternative non-functional transcriptional initiation and a new polymorphism. Nucleic Acids Research, 1988, 16, 7747-7747.	14.5	12
165	The Expression of Neurohypophyseal Peptide Genes in Mammalian Gonadal Tissues. , 1988, , 73-81.		0
166	The Thymus as a Neuroendocrine Organ. Synthesis of Vasopressin and Oxytocin in Human Thymic Epithelium. Annals of the New York Academy of Sciences, 1987, 496, 56-66.	3.8	86
167	In situ hybridization of oxytocin messenger RNA: Macroscopic distribution and quantitation in rat hypothalamic cell groups. Biochemical and Biophysical Research Communications, 1987, 145, 10-14.	2.1	26
168	Vasopressin gene transcripts in the bovine corpus luteum are defective. Molecular and Cellular Endocrinology, 1987, 53, 255-258.	3.2	14
169	Brattleboro Rat Hypothalamic Neurons Transcribe Vasopressin Gene: Evidence from in situ Hybridization. Neuroendocrinology, 1986, 44, 361-364.	2.5	31
170	Quantitation of Vasopressin mRNA and Oxytocin mRNA in Hypothalamic Nuclei by Solution Hybridization Assays. Journal of Neurochemistry, 1986, 47, 1814-1821.	3.9	58
171	The Neurohypophyseal Hormones Vasopressin and Oxytocin. Precursor Structure, Synthesis and Regulation. Biological Chemistry Hoppe-Seyler, 1986, 367, 695-704.	1.4	97
172	Expression of the vasopressin and oxytocin genes in human hypothalami. FEBS Letters, 1985, 193, 12-16.	2.8	36
173	Ovulation triggers oxytocin gene expression in the bovine ovary. FEBS Letters, 1985, 190, 263-267.	2.8	109
174	Cell-free synthesized precursor to somatostatin-28 from the rat hypothalamus. Brain Research, 1984, 292, 93-98.	2.2	4
175	Somatostatin biosynthesis in the mammalian hypothalamus. Biochemical Society Transactions, 1983, 11, 813-815.	3.4	1
176	Vasopressin and Oxytocin Precursors as Model Preprohormones. Neuroendocrinology, 1983, 37, 235-239.	2.5	39
177	TENTATIVE IDENTIFICATION OF LUTEINIZING HORMONE RELEASE HORMONE (LHRH)-LIKE IMMUNOREACTIVITY AMONG IN VITRO TRANSLATION PRODUCTS OF HYPOTHALAMIC mRNA. , 1983, , 245-256.		0
178	In vitro mRNA-directed synthesis and processing of an immunologically identified precursor to tetradecapeptide somatostatin from bovine hypothalamus. Biochemistry, 1982, 21, 1204-1208.	2.5	28
179	Fingerprint Analysis of Bovine Hypothalamic Preprosomatostatin. Identification of Somatostatin-28 at the C Terminus. FEBS Journal, 1982, 129, 81-86.	0.2	7

180 Cellular Polyproteins from Pituitary and Hypothalamus. , 1982, , 581-598.

2

#	Article	IF	CITATIONS
181	Characterization of a kirromycin-resistant elongation factor Tu from Escherichia coli. Biochemistry, 1981, 20, 1355-1361.	2.5	17
182	Modulation by monovalent and divalent cations of the guanosine-5'-triphosphatase activity dependent on elongation factor Tu. Biochemistry, 1981, 20, 6852-6859.	2.5	53
183	Glycosylation of the arginine vasopressin/neurophysin II common precursor. Biochemical and Biophysical Research Communications, 1981, 102, 1230-1236.	2.1	22
184	HYPOTHALAMIC mRNA-DIRECTED SYNTHESIS OF NEUROPOLYPEPTIDES: IMMUNOLOGICAL IDENTIFICATION OF PRECURSORS TO NEUROPHYSIN II/ARGININE VASOPRESSIN AND TO NEUROPHYSIN I/OXYTOCIN. , 1980, , 43-66.		9
185	Interaction of elongation factor Tu with the ribosome. A study using the antibiotic kirromycin. Biochemistry, 1980, 19, 865-870.	2.5	21
186	Hydrolysis of GTP by the elongation factor Tu·kirromycin complex. FEBS Letters, 1979, 98, 111-114.	2.8	24