
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7240340/publications.pdf Version: 2024-02-01



SANUV KALL

| #  | Article                                                                                                                                                                                                                   | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Quantification of Myocardial Blood Flow With Ultrasound-Induced Destruction of Microbubbles<br>Administered as a Constant Venous Infusion. Circulation, 1998, 97, 473-483.                                                | 1.6  | 1,549     |
| 2  | Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548, 413-419.                                                                                                                                    | 13.7 | 781       |
| 3  | An Association between Collateral Blood Flow and Myocardial Viability in Patients with Recent<br>Myocardial Infarction. New England Journal of Medicine, 1992, 327, 1825-1831.                                            | 13.9 | 555       |
| 4  | Dualâ€Energy Xâ€Ray Absorptiometry for Quantification of Visceral Fat. Obesity, 2012, 20, 1313-1318.                                                                                                                      | 1.5  | 474       |
| 5  | Direct In Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and its<br>Local Effects on Tissue. Circulation, 1998, 98, 290-293.                                                               | 1.6  | 462       |
| 6  | lmaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to $\hat{I}\pm$ v $\hat{I}^2$ 3. Circulation, 2003, 108, 336-341.                                                                           | 1.6  | 458       |
| 7  | Noninvasive Assessment of Angiogenesis by Ultrasound and Microbubbles Targeted to $\hat{I}\pm\nu$ -Integrins. Circulation, 2003, 107, 455-460.                                                                            | 1.6  | 355       |
| 8  | Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes. Circulation, 2000, 102, 2745-2750.                                                                                    | 1.6  | 292       |
| 9  | Interactions Between Microbubbles and Ultrasound: In Vitro and In Vivo Observations. Journal of the<br>American College of Cardiology, 1997, 29, 1081-1088.                                                               | 1.2  | 287       |
| 10 | Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles.<br>Ultrasound in Medicine and Biology, 2003, 29, 1759-1767.                                                            | 0.7  | 270       |
| 11 | Detection of Coronary Artery Disease With Myocardial Contrast Echocardiography. Circulation, 1997, 96, 785-792.                                                                                                           | 1.6  | 252       |
| 12 | Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. Journal of the American Society of Echocardiography, 2002, 15, 396-403.                                              | 1.2  | 245       |
| 13 | Noninvasive Imaging of Inflammation by Ultrasound Detection of Phagocytosed Microbubbles.<br>Circulation, 2000, 102, 531-538.                                                                                             | 1.6  | 231       |
| 14 | Microbubble Persistence in the Microcirculation During Ischemia/Reperfusion and Inflammation Is<br>Caused by Integrin- and Complement-Mediated Adherence to Activated Leukocytes. Circulation, 2000,<br>101, 668-675.     | 1.6  | 230       |
| 15 | Noninvasive Quantification of Coronary Blood Flow Reserve in Humans Using Myocardial Contrast<br>Echocardiography. Circulation, 2001, 103, 2560-2565.                                                                     | 1.6  | 226       |
| 16 | Contrast echocardiography in acute myocardial ischemia: I. In vivo determination of total left<br>ventricular "area at risk― Journal of the American College of Cardiology, 1984, 4, 1272-1282.                           | 1.2  | 198       |
| 17 | Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography: bolus or continuous infusion?. Journal of the American College of Cardiology, 1998, 32, 252-260. | 1.2  | 190       |
| 18 | Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular<br>Imaging of Integrin Expression. Circulation, 2005, 111, 3248-3254.                                                            | 1.6  | 180       |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Noninvasive Imaging of Myocardial Reperfusion Injury Using Leukocyte-Targeted Contrast<br>Echocardiography. Circulation, 2002, 105, 1764-1767.                                                                                                                                               | 1.6 | 163       |
| 20 | Myocardial Contrast Echocardiography Versus Thrombolysis in Myocardial Infarction Score in<br>Patients Presenting to the Emergency Department With Chest Pain and a Nondiagnostic<br>Electrocardiogram. Journal of the American College of Cardiology, 2005, 46, 920-927.                    | 1.2 | 144       |
| 21 | Albunex: A Safe and Effective Commercially Produced Agent for Myocardial Contrast<br>Echocardiography. Journal of the American Society of Echocardiography, 1989, 2, 48-52.                                                                                                                  | 1.2 | 142       |
| 22 | Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a<br>second-generation echocardiographic contrast agent capable of producing myocardial opacification<br>from a venous injection. Journal of the American College of Cardiology, 1996, 28, 1292-1300. | 1.2 | 141       |
| 23 | Perfusion Versus Function: The Ischemic Cascade in Demand Ischemia. Circulation, 2002, 105, 987-992.                                                                                                                                                                                         | 1.6 | 141       |
| 24 | Myocardial Contrast Echocardiography. Circulation, 1997, 96, 3745-3760.                                                                                                                                                                                                                      | 1.6 | 141       |
| 25 | Myocardial Contrast Echocardiography. Circulation, 2008, 118, 291-308.                                                                                                                                                                                                                       | 1.6 | 138       |
| 26 | Assessment of Transmural Distribution of Myocardial Perfusion With Contrast Echocardiography.<br>Circulation, 1998, 98, 1912-1920.                                                                                                                                                           | 1.6 | 136       |
| 27 | Assessment of resting perfusion with myocardial contrast echocardiography: Theoretical and practical considerations. American Heart Journal, 2000, 139, 231-240.                                                                                                                             | 1.2 | 132       |
| 28 | Noninvasive Prediction of Ultimate Infarct Size at the Time of Acute Coronary Occlusion Based on the Extent and Magnitude of Collateral-Derived Myocardial Blood Flow. Circulation, 2001, 104, 2471-2477.                                                                                    | 1.6 | 122       |
| 29 | Myocardial contrast echocardiography in humans. II. Assessment of coronary blood flow reserve.<br>Journal of the American College of Cardiology, 1988, 12, 925-934.                                                                                                                          | 1.2 | 116       |
| 30 | Molecular Imaging of Endothelial Vascular Cell Adhesion Molecule-1 Expression and Inflammatory<br>Cell Recruitment During Vasculogenesis and Ischemia-Mediated Arteriogenesis. Circulation, 2008, 117,<br>2902-2911.                                                                         | 1.6 | 113       |
| 31 | There May Be More to Myocardial Viability Than Meets the Eye!. Circulation, 1995, 92, 2790-2793.                                                                                                                                                                                             | 1.6 | 110       |
| 32 | Diagnostic Value of Echocardiography in Suspected Endocarditis. Circulation, 1996, 93, 730-736.                                                                                                                                                                                              | 1.6 | 110       |
| 33 | Role of capillaries in determining CBF reserve: new insights using myocardial contrast<br>echocardiography. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277,<br>H2363-H2372.                                                                                    | 1.5 | 109       |
| 34 | Incremental value of cardiac imaging in patients presenting to the emergency department with chest<br>pain and without ST-segment elevation: a multicenter study. American Heart Journal, 2004, 148, 129-136.                                                                                | 1.2 | 109       |
| 35 | Microvasculature in Acute Myocardial Ischemia: Part II. Circulation, 2004, 109, 310-315.                                                                                                                                                                                                     | 1.6 | 108       |
| 36 | Myocardial contrast echocardiography without significant hemodynamic effects or reactive<br>hyperemia: A major advantage in the imaging of regional myocardial perfusion. Journal of the American<br>College of Cardiology, 1988, 12, 1039-1047.                                             | 1.2 | 106       |

| #  | Article                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Regional left ventricular perfusion and function in patients presenting to the emergency department<br>with chest pain and no ST-segment elevationâ€. European Heart Journal, 2005, 26, 1606-1611.                                                                                                                                             | 1.0 | 104       |
| 38 | Enhancement of Left Ventricular Cavity Opacification by Harmonic Imaging After Venous Injection of<br>Albunex. American Journal of Cardiology, 1997, 79, 1657-1662.                                                                                                                                                                            | 0.7 | 103       |
| 39 | Myocardial contrast echocardiography in humans: I. Safety—A comparison with routine coronary<br>arteriography. Journal of the American College of Cardiology, 1986, 8, 1066-1072.                                                                                                                                                              | 1.2 | 98        |
| 40 | Handheld Ultrasound Versus Physical Examination in Patients Referred for Transthoracic<br>Echocardiography for aÂSuspected Cardiac Condition. JACC: Cardiovascular Imaging, 2014, 7, 983-990.                                                                                                                                                  | 2.3 | 94        |
| 41 | Hypertrophic cardiomyopathy: the future of treatment. European Journal of Heart Failure, 2020, 22, 228-240.                                                                                                                                                                                                                                    | 2.9 | 93        |
| 42 | Contrast echocardiography in acute myocardial ischemia. III. An in vivo comparison of the extent of<br>abnormal wall motion with the area at risk for necrosis. Journal of the American College of<br>Cardiology, 1986, 7, 383-392.                                                                                                            | 1.2 | 92        |
| 43 | Albumin Microbubble Persistence During Myocardial Contrast Echocardiography Is Associated With<br>Microvascular Endothelial Glycocalyx Damage. Circulation, 1998, 98, 2187-2194.                                                                                                                                                               | 1.6 | 89        |
| 44 | Decrease in Coronary Blood Flow Reserve During Hyperlipidemia Is Secondary to an Increase in Blood<br>Viscosity. Circulation, 2001, 104, 2704-2709.                                                                                                                                                                                            | 1.6 | 88        |
| 45 | Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc single-photon emission computed tomography. American Heart Journal, 2004, 147, 1100-1105.                                                     | 1.2 | 82        |
| 46 | Further insights into the no-reflow phenomenon after primary angioplasty in acute myocardial<br>infarction: The role of microthromboemboli. Journal of the American Society of Echocardiography,<br>2003, 16, 15-21.                                                                                                                           | 1.2 | 74        |
| 47 | Coronary Reserve Abnormalities in the Infarcted Myocardium. Circulation, 1996, 94, 748-754.                                                                                                                                                                                                                                                    | 1.6 | 70        |
| 48 | Contrast echocardiography in acute myocardial ischemia. II. The effect of site of injection of contrast<br>agent on the estimation of area at risk for necrosis after coronary occlusion. Journal of the<br>American College of Cardiology, 1985, 6, 825-830.                                                                                  | 1.2 | 65        |
| 49 | Intraoperative assessment of regional myocardial perfusion using quantitative myocardial contrast<br>echocardiography: An experimental evaluation. Journal of the American College of Cardiology, 1990,<br>16, 1267-1279.                                                                                                                      | 1.2 | 65        |
| 50 | Delivery of Drugs with Ultrasound. Echocardiography, 2001, 18, 329-337.                                                                                                                                                                                                                                                                        | 0.3 | 65        |
| 51 | The "no reflow―phenomenon following acute myocardial infarction: Mechanisms and treatment options. Journal of Cardiology, 2014, 64, 77-85.                                                                                                                                                                                                     | 0.8 | 57        |
| 52 | On-line intraoperative quantitation of regional myocardial perfusion during coronary artery bypass<br>graft operations with myocardial contrast two-dimensional echocardiography. Journal of Thoracic<br>and Cardiovascular Surgery, 1992, 104, 1524-1531.                                                                                     | 0.4 | 54        |
| 53 | Measurement of myocardial blood flow velocity reserve with myocardial contrast echocardiography<br>in patients with suspected coronary artery disease: comparison with quantitative gated technetium<br>99m sestamibi single photon emission computed tomography. Journal of the American Society of<br>Echocardiography. 2003. 16. 1171-1177. | 1.2 | 54        |
| 54 | Detection of Coronary Stenoses and Quantification of the Degree and Spatial Extent of Blood Flow<br>Mismatch During Coronary Hyperemia With Myocardial Contrast Echocardiography. Circulation, 1995,<br>91, 821-830.                                                                                                                           | 1.6 | 54        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Detection of peripheral vascular stenosis by assessing skeletal muscle flow reserve. Journal of the<br>American College of Cardiology, 2005, 45, 780-785.                                                                                                        | 1.2 | 53        |
| 56 | Relation between myocardial oxygen consumption and myocardial blood volume: A study using<br>myocardial contrast echocardiography. Journal of the American Society of Echocardiography, 2002,<br>15, 857-863.                                                    | 1.2 | 50        |
| 57 | Myocardial Perfusion Characteristics and Hemodynamic Profile of MRX-115, a Venous<br>Echocardiographic Contrast Agent, During Acute Myocardial Infarction. Journal of the American<br>Society of Echocardiography, 1998, 11, 36-46.                              | 1.2 | 49        |
| 58 | Simultaneous integrin αβ and glycoprotein IIb/IIIa inhibition causes reduction in infarct size in a model of acute coronary thrombosis and primary angioplasty. Cardiovascular Research, 2005, 66, 552-561.                                                      | 1.8 | 48        |
| 59 | Direct effects of dobutamine on the coronary microcirculation: comparison with adenosine using<br>myocardial contrast echocardiography. Journal of the American Society of Echocardiography, 2003,<br>16, 871-879.                                               | 1.2 | 45        |
| 60 | A Computer-aided Approach for the Quantitation of Regional Left Ventricular Function Using<br>Two-dimensional Echocardiography. Journal of the American Society of Echocardiography, 1992, 5,<br>33-40.                                                          | 1.2 | 43        |
| 61 | Myocardial contrast echocardiography: Basic principles. Progress in Cardiovascular Diseases, 2001, 44, 1-11.                                                                                                                                                     | 1.6 | 41        |
| 62 | Prognostic Value of Dipyridamole Stress Myocardial Contrast Echocardiography: Comparison With<br>Single Photon Emission Computed Tomography. Journal of the American Society of Echocardiography,<br>2009, 22, 954-960.                                          | 1.2 | 41        |
| 63 | Relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies: Experimental and clinical implications. Journal of the American College of Cardiology, 1991, 17, 1403-1413.                                     | 1.2 | 38        |
| 64 | Mechanism of Inducible Regional Dysfunction During Dipyridamole Stress. Circulation, 2002, 106, 112-117.                                                                                                                                                         | 1.6 | 38        |
| 65 | Myocardial Capillaries and Coronary Flow Reserve. Journal of the American College of Cardiology, 2008, 52, 1399-1401.                                                                                                                                            | 1.2 | 38        |
| 66 | Mechanism of reversible <sup>99m</sup> Tc-sestamibi perfusion defects during pharmacologically<br>induced vasodilatation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280,<br>H1896-H1904.                                          | 1.5 | 36        |
| 67 | Noninvasive Imaging in Adult Congenital Heart Disease. Circulation Research, 2017, 120, 995-1014.                                                                                                                                                                | 2.0 | 36        |
| 68 | Detection of Noncritical Coronary Stenosis at Rest Without Recourse to Exercise or<br>Pharmacological Stress. Circulation, 2002, 105, 218-223.                                                                                                                   | 1.6 | 35        |
| 69 | Detection of Coronary Stenoses at Rest With Myocardial Contrast Echocardiography. Circulation, 2005, 112, 1154-1160.                                                                                                                                             | 1.6 | 35        |
| 70 | A canine model of chronic ischemic cardiomyopathy: characterization of regional flow-function relations. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H446-H455.                                                                | 1.5 | 34        |
| 71 | Dobutamine versus dipyridamole for inducing reversible perfusion defects in chronic multivessel coronary artery stenosis. Journal of the American College of Cardiology, 2002, 40, 167-174.                                                                      | 1.2 | 34        |
| 72 | Role of collateral blood flow in the apparent disparity between the extent of abnormal wall<br>thickening and perfusion defect size during acute myocardial infarction and demand ischemia. Journal<br>of the American College of Cardiology, 2005, 45, 565-572. | 1.2 | 34        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Relationship Between Dual-Energy X-Ray Absorptiometry Volumetric Assessment and X-ray Computed<br>Tomography–Derived Single-Slice Measurement of Visceral Fat. Journal of Clinical Densitometry, 2014,<br>17, 78-83.                                    | 0.5 | 33        |
| 74 | Therapeutic Genome Editing in Cardiovascular Diseases. JACC Basic To Translational Science, 2019, 4, 122-131.                                                                                                                                           | 1.9 | 32        |
| 75 | Cost-Efficiency of Myocardial Contrast Echocardiography in Patients Presenting to the Emergency<br>Department With Chest Pain of Suspected Cardiac Origin and a Nondiagnostic Electrocardiogram.<br>American Journal of Cardiology, 2008, 102, 649-652. | 0.7 | 31        |
| 76 | Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid.<br>Prostaglandins and Other Lipid Mediators, 2017, 132, 31-40.                                                                                           | 1.0 | 31        |
| 77 | Success of internal mammary bypass grafting can be assessed intraoperatively using myocardial contrast echocardiography. Journal of the American College of Cardiology, 1988, 12, 196-201.                                                              | 1.2 | 30        |
| 78 | Anti-inflammatory and pro-angiogenic effects of beta blockers in a canine model of chronic ischemic cardiomyopathy: comparison between carvedilol and metoprolol. Basic Research in Cardiology, 2013, 108, 384.                                         | 2.5 | 29        |
| 79 | Contractile Versus Microvascular Reserve for the Determination of the Extent of Myocardial Salvage<br>After Reperfusion. Circulation, 1996, 94, 1430-1440.                                                                                              | 1.6 | 29        |
| 80 | Instrumentation for contrast echocardiography: technology and techniques. American Journal of<br>Cardiology, 2002, 90, 8-14.                                                                                                                            | 0.7 | 25        |
| 81 | Evaluating the â€~no reflow' phenomenon with myocardial contrast echocardiography. Basic Research<br>in Cardiology, 2006, 101, 391-399.                                                                                                                 | 2.5 | 25        |
| 82 | Effects of Nitroglycerin on Erythrocyte Rheology and Oxygen Unloading. Circulation, 2006, 113, 2502-2508.                                                                                                                                               | 1.6 | 25        |
| 83 | Coronary Autoregulation Is Abnormal in Syndrome X: Insights Using Myocardial Contrast<br>Echocardiography. Journal of the American Society of Echocardiography, 2013, 26, 290-296.                                                                      | 1.2 | 25        |
| 84 | The role of capillaries in determining coronary blood flow reserve: Implications for stress-induced reversible perfusion defects. Journal of Nuclear Cardiology, 2001, 8, 694-700.                                                                      | 1.4 | 21        |
| 85 | Mechanism and potential treatment of the "no reflow―phenomenon after acute myocardial<br>infarction: role of pericytes and GPR39. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2021, 321, H1030-H1041.                         | 1.5 | 21        |
| 86 | Control of coronary vascular resistance by eicosanoids via a novel GPCR. American Journal of<br>Physiology - Cell Physiology, 2022, 322, C1011-C1021.                                                                                                   | 2.1 | 21        |
| 87 | Computer versus visual analysis of exercise thallium-201 images: A critical appraisal in 325 patients with chest pain. American Heart Journal, 1987, 114, 1129-1137.                                                                                    | 1.2 | 20        |
| 88 | Determinants of microvascular flow. European Heart Journal, 2006, 27, 2272-2274.                                                                                                                                                                        | 1.0 | 19        |
| 89 | Intraoperative Assessment of Myocardial Perfusion Using Contrast Echocardiography.<br>Echocardiography, 1990, 7, 209-228.                                                                                                                               | 0.3 | 18        |
| 90 | Pericyte constriction underlies capillary derecruitment during hyperemia in the setting of arterial stenosis. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H255-H263.                                                  | 1.5 | 18        |

| #   | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | New developments in ultrasound systems for contrast echocardiography. Clinical Cardiology, 1997, 20, 27-30.                                                                                                                                                                                    | 0.7 | 17        |
| 92  | Deoxygenated blood minimizes adherence of sonicated albumin microbubbles during cardioplegic<br>arrest and after blood reperfusion: Experimental and clinical observations with myocardial contrast<br>echocardiography. Journal of Thoracic and Cardiovascular Surgery, 1997, 113, 1100-1108. | 0.4 | 16        |
| 93  | A Predictive Instrument Using Contrast Echocardiography in Patients Presenting to the Emergency<br>Department with Chest Pain and without ST-Segment Elevation. Journal of the American Society of<br>Echocardiography, 2010, 23, 636-642.                                                     | 1.2 | 16        |
| 94  | Molecular imaging with contrast enhanced ultrasound. Journal of Nuclear Cardiology, 2010, 17, 667-677.                                                                                                                                                                                         | 1.4 | 14        |
| 95  | Efficacy and spatial distribution of ultrasound-mediated clot lysis in the absence of thrombolytics.<br>Thrombosis and Haemostasis, 2015, 113, 1357-1369.                                                                                                                                      | 1.8 | 14        |
| 96  | Molecular imaging identifies regions with microthromboemboli during primary angioplasty in acute coronary thrombosis. Journal of Nuclear Medicine, 2004, 45, 1194-200.                                                                                                                         | 2.8 | 14        |
| 97  | Cyclic Variation in Ultrasonic Myocardial Integrated Backscatter Is Due to Phasic Changes in the<br>Number of Patent Myocardial Microvessels. Journal of Ultrasound in Medicine, 2006, 25, 1009-1019.                                                                                          | 0.8 | 12        |
| 98  | Ultrasound stimulates formation and release of vasoactive compounds in brain endothelial cells.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H583-H591.                                                                                                    | 1.5 | 12        |
| 99  | Mechanism of myocardial dysfunction in the Presence of chronic coronary stenosis and Normal resting myocardial blood flow: Clinical implications. Journal of the American Society of Echocardiography, 2001, 14, 1047-1056.                                                                    | 1.2 | 11        |
| 100 | Myocardial contrast echocardiography, single-photon emission computed tomography, and regional<br>function analysis for coronary stenosis description during vasodilator stress. American Journal of<br>Cardiology, 2003, 91, 445-448.                                                         | 0.7 | 11        |
| 101 | Therapeutic Ultrasound Increases Myocardial Blood Flow in Ischemic Myocardium and Cardiac<br>Endothelial Cells: Results of InÂVivo and InÂVitro Experiments. Journal of the American Society of<br>Echocardiography, 2019, 32, 1151-1160.                                                      | 1.2 | 9         |
| 102 | A-receptor blockade: a novel approach for assessing myocardial viability in chronic ischemic cardiomyopathy. Journal of the American Society of Echocardiography, 2003, 16, 764-769.                                                                                                           | 1.2 | 8         |
| 103 | Phasic changes in arterial blood volume is influenced by collateral blood flow: implications for the quantification of coronary stenosis at rest. Heart, 2007, 93, 438-443.                                                                                                                    | 1.2 | 8         |
| 104 | Effect of modest alcohol consumption over 1-2 weeks on the coronary microcirculation of normal subjects. European Journal of Echocardiography, 2010, 11, 683-689.                                                                                                                              | 2.3 | 8         |
| 105 | Plasma Oxylipins: A Potential Risk Assessment Tool in Atherosclerotic Coronary Artery Disease.<br>Frontiers in Cardiovascular Medicine, 2021, 8, 645786.                                                                                                                                       | 1.1 | 8         |
| 106 | Microbubbles and ultrasound: a bird's eye view. Transactions of the American Clinical and Climatological Association, 2004, 115, 137-48; discussion 148.                                                                                                                                       | 0.9 | 8         |
| 107 | Contrast echocardiography and myocardial perfusion. Clinical Cardiology, 2009, 14, V-15-V-18.                                                                                                                                                                                                  | 0.7 | 7         |
| 108 | Relation between regional function and coronary blood flow reserve in multivessel coronary artery<br>stenosis. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H3058-H3064.                                                                                      | 1.5 | 5         |

SANJIV KAUL

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Therapeutic Ultrasound Improves Myocardial Blood Flow and Reduces Infarct Size in a Canine Model of Coronary Microthromboembolism. Journal of the American Society of Echocardiography, 2020, 33, 234-246. | 1.2 | 5         |
| 110 | Persistent Coronary Vasomotor Tone During Myocardial Ischemia Occurs at the Capillary Level and<br>May Involve Pericytes. Frontiers in Cardiovascular Medicine, 0, 9, .                                    | 1.1 | 5         |
| 111 | Echocardiographic insights into regional flow-function relationships in coronary artery disease.<br>Journal of Nuclear Cardiology, 2005, 12, 216-226.                                                      | 1.4 | 4         |
| 112 | Myocardial Contrast Echocardiography. JACC: Cardiovascular Imaging, 2010, 3, 212-218.                                                                                                                      | 2.3 | 4         |
| 113 | Is it time to replace physical examination with a hand-held ultrasound device?. Journal of<br>Cardiovascular Echography, 2014, 24, 97.                                                                     | 0.1 | 4         |
| 114 | What is coronary blood flow reserve? Insights using myocardial contrast echocardiography. Journal of Echocardiography, 2012, 10, 1-7.                                                                      | 0.4 | 3         |
| 115 | Assessment of Myocardial Collateral Blood Flow with Contrast Echocardiography. Korean<br>Circulation Journal, 2015, 45, 351.                                                                               | 0.7 | 3         |
| 116 | The Role of Pericytes in Hyperemia-Induced Capillary De-Recruitment Following Stenosis. Current<br>Tissue Microenvironment Reports, 2020, 1, 163-169.                                                      | 1.3 | 3         |
| 117 | Quantification of microbubbleâ€induced sonothrombolysis in an ex vivo nonâ€human primate model.<br>Journal of Thrombosis and Haemostasis, 2021, 19, 502-512.                                               | 1.9 | 3         |
| 118 | Phosphoproteomic response of cardiac endothelial cells to ischemia and ultrasound. Biochimica Et<br>Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140683.                                         | 1.1 | 3         |
| 119 | Workshop on Contrast Echocardiography: Myocardial Perfusion Echocardiography, 1988, 5, 277-292.                                                                                                            | 0.3 | 2         |
| 120 | Transmyocardial revascularization ameliorates ischemia by attenuating paradoxical catecholamine-induced vasoconstriction. Journal of Nuclear Cardiology, 2007, 14, 207-214.                                | 1.4 | 2         |
| 121 | Ultrasound therapy for treatment of lower extremity intermittent claudication. American Journal of Surgery, 2021, 221, 1271-1275.                                                                          | 0.9 | 2         |
| 122 | Role of Doppler Echocardiography in Coronary Artery Disease. Journal of Intensive Care Medicine,<br>1991, 6, 238-256.                                                                                      | 1.3 | 1         |
| 123 | Myocardial contrast echocardiography in coronary artery disease. Journal of Cardiovascular<br>Echography, 2011, 21, 1-11.                                                                                  | 0.1 | 1         |
| 124 | VIEWS FROM THE MASTERS: Pocket ultrasound devices: time to discard the stethoscope?. Journal of Animal Science and Technology, 2014, 1, E7-E8.                                                             | 0.8 | 1         |
| 125 | Reply. JACC: Cardiovascular Imaging, 2015, 8, 622.                                                                                                                                                         | 2.3 | 1         |
| 126 | Reply. JACC: Cardiovascular Imaging, 2015, 8, 620-621.                                                                                                                                                     | 2.3 | 0         |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Response to commentary on JTHâ€2020–01486.R1 ―Quantification of microbubbleâ€induced<br>sonothrombolysis in an exâ€vivo nonâ€human primate model. Journal of Thrombosis and Haemostasis,<br>2021, 19, 874-875. | 1.9 | Ο         |
| 128 | (Phospho)Proteomic dataset of ischemia- and ultrasound- stimulated mouse cardiac endothelial cells<br>in vitro. Data in Brief, 2021, 38, 107343.                                                               | 0.5 | 0         |