Jack J Lissauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/724029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixing of Condensable Constituents with H–He during the Formation and Evolution of Jupiter. Planetary Science Journal, 2022, 3, 74.	3.6	9
2	Do tides destabilize Trojan exoplanets?. Icarus, 2022, 385, 115087.	2.5	1
3	The Discovery of a Planetary Companion Interior to Hot Jupiter WASP-132 b. Astronomical Journal, 2022, 164, 13.	4.7	10
4	Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch. Icarus, 2021, 355, 114087.	2.5	17
5	Eccentricities and the stability of closely-spaced five-planet systems. Icarus, 2021, 358, 114038.	2.5	9
6	Precise Transit and Radial-velocity Characterization of a Resonant Pair: The Warm Jupiter TOI-216c and Eccentric Warm Neptune TOI-216b. Astronomical Journal, 2021, 161, 161.	4.7	21
7	Following Up the Kepler Field: Masses of Targets for Transit Timing and Atmospheric Characterization. Astronomical Journal, 2021, 161, 246.	4.7	13
8	Orbital stability of compact three-planet systems – II: post-instability impact behaviour. Monthly Notices of the Royal Astronomical Society, 2021, 506, 6181-6194.	4.4	2
9	Warm Jupiters in TESS Full-frame Images: A Catalog and Observed Eccentricity Distribution for Year 1. Astrophysical Journal, Supplement Series, 2021, 255, 6.	7.7	18
10	The TESS Objects of Interest Catalog from the TESS Prime Mission. Astrophysical Journal, Supplement Series, 2021, 254, 39.	7.7	190
11	TOI-1634 b: An Ultra-short-period Keystone Planet Sitting inside the M-dwarf Radius Valley. Astronomical Journal, 2021, 162, 79.	4.7	25
12	Orbital stability of compact three-planet systems, I: Dependence of system lifetimes on initial orbital separations and longitudes. Icarus, 2021, 364, 114470.	2.5	8
13	The TESS Mission Target Selection Procedure. Publications of the Astronomical Society of the Pacific, 2021, 133, 095002.	3.1	5
14	TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-like Star HD 108236. Astronomical Journal, 2021, 161, 85.	4.7	13
15	TIC 172900988: A Transiting Circumbinary Planet Detected in One Sector of TESS Data. Astronomical Journal, 2021, 162, 234.	4.7	30
16	GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star. Science, 2021, 374, 1271-1275.	12.6	30
17	A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*. Astronomical Journal, 2021, 162, 283.	4.7	13
18	Obliquity Evolution of the Potentially Habitable Exoplanet Kepler-62f. Astrobiology, 2020, 20, 73-90.	3.0	11

#	Article	IF	CITATIONS
19	HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (<i>V</i> Â= 7.9) star unveiled by <i>TESS</i> . Monthly Notices of the Royal Astronomical Society, 2020, 491, 2982-2999.	4.4	38
20	Searching for Planets Orbiting <i>α</i> Cen A with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2020, 132, 015002.	3.1	14
21	An ultrahot Neptune in the Neptune desert. Nature Astronomy, 2020, 4, 1148-1157.	10.1	43
22	TOI-1338: TESS' First Transiting Circumbinary Planet. Astronomical Journal, 2020, 159, 253.	4.7	58
23	Evolution of α Centauri b's protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2436-2447.	4.4	5
24	A remnant planetary core in the hot-Neptune desert. Nature, 2020, 583, 39-42.	27.8	73
25	A Pair of TESS Planets Spanning the Radius Valley around the Nearby Mid-M Dwarf LTT 3780. Astronomical Journal, 2020, 160, 3.	4.7	62
26	TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet*. Astronomical Journal, 2020, 160, 96.	4.7	25
27	The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System. Astronomical Journal, 2020, 160, 116.	4.7	67
28	TOI-824 b: A New Planet on the Lower Edge of the Hot Neptune Desert. Astronomical Journal, 2020, 160, 153.	4.7	27
29	Retrograde-rotating Exoplanets Experience Obliquity Excitations in an Eccentricity-enabled Resonance. Planetary Science Journal, 2020, 1, 8.	3.6	4
30	TESS Hunt for Young and Maturing Exoplanets (THYME): A Planet in the 45 Myr Tucana–Horologium Association. Astrophysical Journal Letters, 2019, 880, L17.	8.3	110
31	A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270. Nature Astronomy, 2019, 3, 1099-1108.	10.1	84
32	The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf. Astronomical Journal, 2019, 158, 32.	4.7	93
33	Two New HATNet Hot Jupiters around A Stars and the First Climpse at the Occurrence Rate of Hot Jupiters from TESS ^{â^—} . Astronomical Journal, 2019, 158, 141.	4.7	83
34	TOI-216b and TOI-216 c: Two Warm, Large Exoplanets in or Slightly Wide of the 2:1 Orbital Resonance. Astronomical Journal, 2019, 158, 65.	4.7	22
35	The Revised TESS Input Catalog and Candidate Target List. Astronomical Journal, 2019, 158, 138.	4.7	577
36	TESS Discovery of an Ultra-short-period Planet around the Nearby M Dwarf LHS 3844. Astrophysical Journal Letters, 2019, 871, L24.	8.3	108

#	Article	IF	CITATIONS
37	Discovery of a Third Transiting Planet in the Kepler-47 Circumbinary System. Astronomical Journal, 2019, 157, 174.	4.7	65
38	Near-resonance in a System of Sub-Neptunes from TESS. Astronomical Journal, 2019, 158, 177.	4.7	34
39	Obliquity Evolution of Circumstellar Planets in Sun-like Stellar Binaries. Astrophysical Journal, 2019, 886, 56.	4.5	9
40	Formation of Giant Planets. , 2018, , 1-25.		2
41	New Formation Models for the Kepler-36 System. Astrophysical Journal, 2018, 868, 138.	4.5	43
42	The discovery and legacy of Kepler's multi-transiting planetary systems. New Astronomy Reviews, 2018, 83, 49-60.	12.8	2
43	Formation of Giant Planets. , 2018, , 2319-2343.		6
44	TESS Discovery of a Transiting Super-Earth in the pi Mensae System. Astrophysical Journal Letters, 2018, 868, L39.	8.3	148
45	Long-term Stability of Tightly Packed Multi-planet Systems in Prograde, Coplanar, Circumstellar Orbits within the α Centauri AB System. Astronomical Journal, 2018, 155, 130.	4.7	20
46	Long-term Stability of Planets in the α Centauri System. II. Forced Eccentricities. Astronomical Journal, 2018, 155, 64.	4.7	33
47	Formation of Giant Planets. , 2018, , 1-25.		1
48	Planetary Candidates Observed by <i>Kepler</i> . VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25. Astrophysical Journal, Supplement Series, 2018, 235, 38.	7.7	316
49	Outer Architecture of Kepler-11: Constraints from Coplanarity. Astronomical Journal, 2017, 153, 227.	4.7	30
50	LONG-TERM STABILITY OF PLANETS IN THE $\hat{I}\pm$ CENTAURI SYSTEM. Astronomical Journal, 2016, 151, 111.	4.7	54
51	REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10*. Astrophysical Journal, 2016, 819, 83.	4.5	74
52	SECURE MASS MEASUREMENTS FROM TRANSIT TIMING: 10 KEPLER EXOPLANETS BETWEEN 3 AND 8 M _⊕ WITH DIVERSE DENSITIES AND INCIDENT FLUXES. Astrophysical Journal, 2016, 820, 39.	4.5	147
53	KEPLER-1647B: THE LARGEST AND LONGEST-PERIOD KEPLER TRANSITING CIRCUMBINARY PLANET. Astrophysical Journal, 2016, 827, 86.	4.5	101
54	A DYNAMICAL ANALYSIS OF THE KEPLER-80 SYSTEM OF FIVE TRANSITING PLANETS. Astronomical Journal, 2016, 152, 105.	4.7	115

#	Article	IF	CITATIONS
55	Obliquity Variability of a Potentially Habitable Early Venus. Astrobiology, 2016, 16, 487-499.	3.0	15
56	The Diversity of Low-mass Exoplanets Characterized via Transit Timing. Proceedings of the International Astronomical Union, 2015, 11, 40-50.	0.0	2
57	The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature, 2015, 522, 321-323.	27.8	103
58	VALIDATION OF <i>KEPLER</i> 'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS. Astrophysical Journal, 2014, 784, 45.	4.5	418
59	ARCHITECTURE OF <i>KEPLER </i> 'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES. Astrophysical Journal, 2014, 790, 146.	4.5	536
60	Transiting Exoplanet Survey Satellite. Journal of Astronomical Telescopes, Instruments, and Systems, 2014, 1, 014003.	1.8	2,300
61	VALIDATION OF <i>KEPLER</i> 'S MULTIPLE PLANET CANDIDATES. II. REFINED STATISTICAL FRAMEWORK AND DESCRIPTIONS OF SYSTEMS OF SPECIAL INTEREST. Astrophysical Journal, 2014, 784, 44.	4.5	182
62	MASSES, RADII, AND ORBITS OF SMALL <i>KEPLER</i> PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS. Astrophysical Journal, Supplement Series, 2014, 210, 20.	7.7	418
63	Transiting Exoplanet Survey Satellite (TESS). Proceedings of SPIE, 2014, , .	0.8	566
64	KEPLER-79'S LOW DENSITY PLANETS. Astrophysical Journal, 2014, 785, 15.	4.5	120
65	ACCRETION AND EVOLUTION OF â^¼2.5 <i>M</i> _⊕ PLANETS WITH VOLUMINOUS H/He ENVELOPE Astrophysical Journal, 2014, 791, 103.	ES _{4.5}	66
66	Growth of Jupiter: Enhancement of core accretion by a voluminous low-mass envelope. Icarus, 2014, 241, 298-312.	2.5	24
67	Advances in exoplanet science from Kepler. Nature, 2014, 513, 336-344.	27.8	84
68	THE EFFECT OF PLANETS BEYOND THE ICE LINE ON THE ACCRETION OF VOLATILES BY HABITABLE-ZONE ROCKY PLANETS. Astrophysical Journal, 2014, 786, 33.	4.5	49
69	Transit timing observations from Kepler – VII. Confirmation of 27 planets in 13 multiplanet systems via transit timing variations and orbital stability. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1077-1087.	4.4	174
70	DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION. Astrophysical Journal, 2013, 770, 120.	4.5	77
71	FUNDAMENTAL PROPERTIES OF <i>KEPLER </i> PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY. Astrophysical Journal, 2013, 767, 127.	4.5	259
72	PLANETARY CANDIDATES OBSERVED BY <i>KEPLER</i> . III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA. Astrophysical Journal, Supplement Series, 2013, 204, 24.	7.7	823

#	Article	IF	CITATIONS
73	ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES. Astrophysical Journal, 2013, 770, 131.	4.5	145
74	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . VIII. CATALOG OF TRANSIT TIMING MEASUREMENTS OF THE FIRST TWELVE QUARTERS. Astrophysical Journal, Supplement Series, 2013, 208, 16.	7.7	147
75	ON THE RELATIVE SIZES OF PLANETS WITHIN <i>KEPLER </i> MULTIPLE-CANDIDATE SYSTEMS. Astrophysical Journal, 2013, 763, 41.	4.5	112
76	KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS. Astrophysical Journal, 2013, 766, 40.	4.5	106
77	Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature, 2012, 481, 475-479.	27.8	385
78	PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM <i>KEPLER</i> . Astrophysical Journal, Supplement Series, 2012, 201, 15.	7.7	871
79	Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities. Science, 2012, 337, 556-559.	12.6	335
80	ALMOST ALL OF <i>KEPLER</i> 'S MULTIPLE-PLANET CANDIDATES ARE PLANETS. Astrophysical Journal, 2012, 750, 112.	4.5	266
81	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS. Astrophysical Journal, 2012, 750, 113.	4.5	94
82	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS. Astrophysical Journal, 2012, 750, 114.	4.5	199
83	KEPLER-21b: A 1.6 <i>R</i> _{Earth} PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070. Astrophysical Journal, 2012, 746, 123.	4.5	124
84	RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM. Astrophysical Journal Letters, 2012, 755, L21.	8.3	88
85	KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES. Astrophysical Journal, 2012, 749, 15.	4.5	125
86	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS. Astrophysical Journal, 2012, 756, 185.	4.5	75
87	Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR. Astrophysical Journal, 2012, 745, 120.	4.5	218
88	Alignment of the stellar spin with the orbits of a three-planet system. Nature, 2012, 487, 449-453.	27.8	184
89	Kepler-47: A Transiting Circumbinary Multiplanet System. Science, 2012, 337, 1511-1514.	12.6	312
90	THE NEPTUNE-SIZED CIRCUMBINARY PLANET KEPLER-38b. Astrophysical Journal, 2012, 758, 87.	4.5	213

#	Article	IF	CITATIONS
91	Obliquity variations of a moonless Earth. Icarus, 2012, 217, 77-87.	2.5	75
92	Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2342-2354.	4.4	151
93	FORMATION AND STRUCTURE OF LOW-DENSITY EXO-NEPTUNES. Astrophysical Journal, 2011, 738, 59.	4.5	213
94	MODELING <i>KEPLER</i> TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM. Astrophysical Journal, 2011, 727, 24.	4.5	215
95	A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS. Astrophysical Journal Letters, 2011, 732, L24.	8.3	167
96	THE KEPLER-19 SYSTEM: A TRANSITING 2.2 <i>R</i> _⊕ PLANET AND A SECOND PLANET DETECTED VI TRANSIT TIMING VARIATIONS. Astrophysical Journal, 2011, 743, 200.	A _{4.5}	130
97	A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature, 2011, 470, 53-58.	27.8	553
98	Kepler-16: A Transiting Circumbinary Planet. Science, 2011, 333, 1602-1606.	12.6	608
99	KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, <i>WARM-SPITZER</i> PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS. Astrophysical Journal, Supplement Series, 2011, 197, 7.	7.7	171
100	THE DISTRIBUTION OF TRANSIT DURATIONS FOR <i>KEPLER</i> PLANET CANDIDATES AND IMPLICATIONS FOR THEIR ORBITAL ECCENTRICITIES. Astrophysical Journal, Supplement Series, 2011, 197, 1.	7.7	124
101	DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER. Astrophysical Journal, Supplement Series, 2011, 197, 9.	7.7	82
102	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS. Astrophysical Journal, Supplement Series, 2011, 197, 2.	7.7	98
103	KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM. Astrophysical Journal, Supplement Series, 2011, 197, 5.	7.7	103
104	ARCHITECTURE AND DYNAMICS OF <i>KEPLER</i> 'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS. Astrophysical Journal, Supplement Series, 2011, 197, 8.	7.7	593
105	CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY <i>KEPLER</i> . II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA. Astrophysical Journal, 2011, 736, 19.	4.5	859
106	Composition of massive giant planets. Proceedings of the International Astronomical Union, 2010, 6, 95-100.	0.0	0
107	<i>KEPLER</i> OBSERVATIONS OF TRANSITING HOT COMPACT OBJECTS. Astrophysical Journal Letters, 2010, 713, L150-L154.	8.3	75
108	FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES. Astrophysical Journal, 2010, 725, 1226-1241.	4.5	91

#	Article	IF	CITATIONS
109	Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets. Celestial Mechanics and Dynamical Astronomy, 2010, 107, 487-500.	1.4	39
110	Formation of Jupiter using opacities based on detailed grain physics. Icarus, 2010, 209, 616-624.	2.5	190
111	Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations. Science, 2010, 330, 51-54.	12.6	339
112	<i>KEPLER MISSION</i> DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE. Astrophysical Journal Letters, 2010, 713, L79-L86.	8.3	941
113	Kepler Planet-Detection Mission: Introduction and First Results. Science, 2010, 327, 977-980.	12.6	2,848
114	Models of Jupiter's growth incorporating thermal and hydrodynamic constraints. Icarus, 2009, 199, 338-350.	2.5	229
115	Orbital stability of systems of closely-spaced planets. Icarus, 2009, 201, 381-394.	2.5	160
116	On the Luminosity of Young Jupiters. Astrophysical Journal, 2007, 655, 541-549.	4.5	388
117	Lifetimes of small bodies in planetocentric (or heliocentric) orbits. Icarus, 2007, 188, 481-505.	2.5	17
118	A Widebinary Solar Companion as a Possible Origin of Sedna-like Objects. Earth, Moon and Planets, 2006, 97, 459-470.	0.6	17
119	Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus, 2005, 179, 415-431.	2.5	384
120	Formation of the Outer Planets. Space Science Reviews, 2005, 116, 11-24.	8.1	13
121	Symplectic Integrator Algorithms for Modeling Planetary Accretion in Binary Star Systems. Astronomical Journal, 2002, 123, 2884-2894.	4.7	96
122	The β Pictoris Disk: Peculiar or Just Young?. International Astronomical Union Colloquium, 2002, 187, 309-317.	0.1	0
123	Terrestrial Planet Formation in the α Centauri System. Astrophysical Journal, 2002, 576, 982-996.	4.5	106
124	How common are habitable planets?. Nature, 1999, 402, C11-C14.	27.8	26
125	Three planets for Upsilon Andromedae. Nature, 1999, 398, 659-659.	27.8	27
126	Resonant Satellite Torques on Low Optical Depth Particulate Disks. Icarus, 1998, 134, 155-162.	2.5	11

#	Article	IF	CITATIONS
127	The Effects of Post-Main-Sequence Solar Mass Loss on the Stability of Our Planetary System. Icarus, 1998, 134, 303-310.	2.5	144
128	It's not easy to make the Moon. Nature, 1997, 389, 327-328.	27.8	13
129	Growing up in a two-parent family?. Nature, 1997, 386, 18-19.	27.8	8
130	Accretion of Mass and Spin Angular Momentum by a Planet on an Eccentric Orbit. Icarus, 1997, 127, 65-92.	2.5	28
131	Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus, 1996, 124, 62-85.	2.5	2,403
132	Nebular Gas Drag and Planetary Accretion. Icarus, 1993, 106, 288-307.	2.5	73
133	Planet Formation. Annual Review of Astronomy and Astrophysics, 1993, 31, 129-172.	24.3	635
134	Accretion rates of protoplanets. Icarus, 1992, 100, 440-463.	2.5	133
135	The origin of the systematic component of planetary rotation. Icarus, 1991, 94, 126-159.	2.5	61
136	Dynamical effects of cometary bombardment of Saturn's rings and moons. International Astronomical Union Colloquium, 1985, 83, 181-182.	0.1	0
137	Ring torque on janus and the melting of Enceladus. Icarus, 1984, 58, 159-168.	2.5	60
138	Planet Formation. , 0, , 512-553.		0
139	Planet Formation. , 0, , 512-553.		0
			· ·

140 Planet formation. , 0, , 121-137.

0