
Junyu Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7239953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resveratrol and cancer treatment: updates. Annals of the New York Academy of Sciences, 2017, 1403, 59-69.	3.8	98
2	Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer. Molecular Cancer, 2017, 16, 131.	19.2	93
3	Loss of <scp>AMPK</scp> activation promotes the invasion and metastasis of pancreatic cancer through an <scp>HSF</scp> 1â€dependent pathway. Molecular Oncology, 2017, 11, 1475-1492.	4.6	67
4	Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting <scp>SREBP</scp> 1. Cell Proliferation, 2019, 52, e12514.	5.3	65
5	Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	63
6	Paracrine HGF/c-MET enhances the stem cell-like potential and glycolysis of pancreatic cancer cells via activation of YAP/HIF-1α. Experimental Cell Research, 2018, 371, 63-71.	2.6	63
7	Hypoxiaâ€driven paracrine osteopontin/integrin αvβ3 signaling promotes pancreatic cancer cell epithelial–mesenchymal transition and cancer stem cellâ€like properties by modulating forkhead box protein M1. Molecular Oncology, 2019, 13, 228-245.	4.6	56
8	Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	54
9	Targeting glypicanâ€4 overcomes 5â€FU resistance and attenuates stem cell–like properties via suppression of Wnt/l²â€catenin pathway in pancreatic cancer cells. Journal of Cellular Biochemistry, 2018, 119, 9498-9512.	2.6	44
10	Metformin suppresses tumor angiogenesis and enhances the chemosensitivity of gemcitabine in a genetically engineered mouse model of pancreatic cancer. Life Sciences, 2018, 208, 253-261.	4.3	40
11	Mouse-Derived Allografts: A Complementary Model to the KPC Mice on Researching Pancreatic Cancer In Vivo. Computational and Structural Biotechnology Journal, 2019, 17, 498-506.	4.1	18
12	Metformin suppresses the invasive ability of pancreatic cancer cells by blocking autocrine TGFâ€Î²1 signaling. Oncology Reports, 2018, 40, 1495-1502.	2.6	16
13	Norepinephrine enhances cell viability and invasion, and inhibits apoptosis of pancreatic cancer cells in a Notch‑1‑dependent manner. Oncology Reports, 2018, 40, 3015-3023.	2.6	12
14	Overexpression of Gremlinï;½1 by sonic hedgehog signaling promotes pancreatic cancer progression. International Journal of Oncology, 2018, 53, 2445-2457.	3.3	11