

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7239886/publications.pdf Version: 2024-02-01

DENC MI

#	Article	IF	CITATIONS
1	Functional metal–organic framework-based nanocarriers for accurate magnetic resonance imaging and effective eradication of breast tumor and lung metastasis. Journal of Colloid and Interface Science, 2021, 581, 31-43.	5.0	43
2	Clinical Translation of Selfâ€Assembled Cancer Nanomedicines. Advanced Therapeutics, 2021, 4, .	1.6	34
3	Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials, 2021, 273, 120847.	5.7	55
4	Nanoprobe-Based Magnetic Resonance Imaging of Hypoxia Predicts Responses to Radiotherapy, Immunotherapy, and Sensitizing Treatments in Pancreatic Tumors. ACS Nano, 2021, 15, 13526-13538.	7.3	30
5	Editorial: Bottom-Up Approach: A Route for Effective Multi-Modal Imaging of Tumors. Frontiers in Oncology, 2021, 11, 812472.	1.3	1
6	Ligandâ€Installed Nanocarriers toward Precision Therapy. Advanced Materials, 2020, 32, e1902604.	11.1	189
7	Albumin nanocomposites with MnO2/Gd2O3 motifs for precise MR imaging of acute myocardial infarction in rabbit models. Biomaterials, 2020, 230, 119614.	5.7	42
8	Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Research, 2020, 13, 238-245.	5.8	42
9	Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10, 4557-4588.	4.6	334
10	Ligand-installed anti-VEGF genomic nanocarriers for effective gene therapy of primary and metastatic tumors. Journal of Controlled Release, 2020, 320, 314-327.	4.8	19
11	Ligandâ€Installed Nanocarriers: Ligandâ€Installed Nanocarriers toward Precision Therapy (Adv. Mater.) Tj ETQq2	l 1 0.7843 11.1	14 ggBT /Ove
12	Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics. Biomaterials Science, 2019, 7, 3942-3960.	2.6	71
13	Polymeric Micelles for Tumor Theranostics. , 2019, , 289-302.		3
14	Smart internal and external stimuli-responsive nanocarriers for image-guided drug delivery and therapy. , 2019, , 197-217.		0
15	Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery. Journal of Biomedical Nanotechnology, 2019, 15, 373-381.	0.5	21
16	Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells. Journal of Controlled Release, 2019, 295, 268-277.	4.8	82
17	Multistimuli Responsive Core–Shell Nanoplatform Constructed from Fe ₃ O ₄ @MOF Equipped with Pillar[6]arene Nanovalves. Small, 2018, 14, e1704440.	5.2	156
18	Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Materials Science and Engineering C, 2018, 83, 218-232.	3.8	68

Peng Mi

#	Article	IF	CITATIONS
19	Targeted Nanoparticleâ€Mediated Gene Therapy Mimics Oncolytic Virus for Effective Melanoma Treatment. Advanced Functional Materials, 2018, 28, 1800173.	7.8	10
20	Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials, 2018, 176, 60-70.	5.7	37
21	Enzyme-responsive polymers for drug delivery and molecular imaging. , 2018, , 101-119.		6
22	Boron delivery agents for neutron capture therapy of cancer. Cancer Communications, 2018, 38, 1-15.	3.7	266
23	Negative regulation of cationic nanoparticle-induced inflammatory toxicity through the increased production of prostaglandin E2 via mitochondrial DNA-activated Ly6C ⁺ monocytes. Theranostics, 2018, 8, 3138-3152.	4.6	25
24	Nanoparticles Targeting and Remodeling Tumor Microenvironment for Cancer Theranostics. Journal of Biomedical Nanotechnology, 2018, 14, 1189-1207.	0.5	21
25	Selfâ€Assembled Bifunctional Peptide as Effective Drug Delivery Vector with Powerful Antitumor Activity. Advanced Science, 2017, 4, 1600285.	5.6	29
26	Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. Journal of Controlled Release, 2017, 254, 1-9.	4.8	70
27	Gadolinium hybrid iron oxide nanocomposites for dual T ₁ - and T ₂ -weighted MR imaging of cell labeling. Biomaterials Science, 2017, 5, 50-56.	2.6	18
28	Molecular Cancer Imaging with Polymeric Nanoassemblies: From Tumor Detection to Theranostics. Macromolecular Bioscience, 2017, 17, 1600305.	2.1	35
29	A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nature Nanotechnology, 2016, 11, 724-730.	15.6	411
30	Bio-inspired virus-like nanovesicle for effective vaccination. Human Vaccines and Immunotherapeutics, 2016, 12, 2090-2091.	1.4	9
31	Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. Journal of Controlled Release, 2016, 244, 247-256.	4.8	87
32	Inorganic Nanocarriers Overcoming Multidrug Resistance for Cancer Theranostics. Advanced Science, 2016, 3, 1600134.	5.6	107
33	Imaging-guided delivery of RNAi for anticancer treatment. Advanced Drug Delivery Reviews, 2016, 104, 44-60.	6.6	102
34	Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials, 2016, 83, 102-114.	5.7	77
35	In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. Journal of Cancer Research and Clinical Oncology, 2016, 142, 767-775.	1.2	39
36	Calcium phosphate-based organic–inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy. Biomaterials Science, 2016, 4, 826-838.	2.6	59

Peng Mi

#	Article	IF	CITATIONS
37	Block copolymer hybrid calcium phosphate micelles for cancer diagnosis and neutron capture therapy. Journal of Controlled Release, 2015, 213, e88.	4.8	3
38	Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy. ACS Nano, 2015, 9, 5913-5921.	7.3	119
39	Systemic Targeting of Lymph Node Metastasis through the Blood Vascular System by Using Size-Controlled Nanocarriers. ACS Nano, 2015, 9, 4957-4967.	7.3	118
40	Polymeric Nanocarriers for Cancer Therapy. Advances in Delivery Science and Technology, 2014, , 67-94.	0.4	1
41	Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. Journal of Controlled Release, 2014, 178, 18-24.	4.8	108
42	Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. Journal of the American Chemical Society, 2014, 136, 157-163.	6.6	171
43	Light-Induced Cytosolic Activation of Reduction-Sensitive Camptothecin-Loaded Polymeric Micelles for Spatiotemporally Controlled <i>in Vivo</i> Chemotherapy. ACS Nano, 2014, 8, 11591-11602.	7.3	94
44	Precise Engineering of siRNA Delivery Vehicles to Tumors Using Polyion Complexes and Gold Nanoparticles. ACS Nano, 2014, 8, 8979-8991.	7.3	126
45	Polymeric micelles loaded with platinum anticancer drugs target preangiogenic micrometastatic niches associated with inflammation. Journal of Controlled Release, 2014, 189, 1-10.	4.8	43
46	Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. Journal of Controlled Release, 2014, 174, 63-71.	4.8	102
47	Gd-DTPA-loaded polymer–metal complex micelles with high relaxivity for MRÂcancer imaging. Biomaterials, 2013, 34, 492-500.	5.7	103
48	A novel stimuli-responsive hydrogel for K+-induced controlled-release. Polymer, 2010, 51, 1648-1653.	1.8	64
49	A Smart Polymer with Ionâ€Induced Negative Shift of the Lower Critical Solution Temperature for Phase Transition. Macromolecular Rapid Communications, 2008, 29, 27-32.	2.0	57
50	A Novel Thermoresponsive Hydrogel with Ion-Recognition Property through Supramolecular Hostâ^'Guest Complexation. Journal of Physical Chemistry B, 2008, 112, 1112-1118.	1.2	74
51	Synthesis and Characterization of a Novel Thermo-Sensitive Copolymer ofN-Isopropylacrylamide and Dibenzo-18-crown-6-diacrylamide. Macromolecular Rapid Communications, 2006, 27, 2072-2077.	2.0	25