Joshua G Corbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7239437/publications.pdf

Version: 2024-02-01

361413 526287 2,749 27 20 27 citations h-index g-index papers 28 28 28 3215 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sex-Specific Social Behavior and Amygdala Proteomic Deficits in Foxp2+/â- Mutant Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 706079.	2.0	6
2	Identification of amygdala-expressed genes associated with autism spectrum disorder. Molecular Autism, 2020, $11,39$.	4.9	22
3	Kcnn2 blockade reverses learning deficits in a mouse model of fetal alcohol spectrum disorders. Nature Neuroscience, 2020, 23, 533-543.	14.8	26
4	Sex Differences in Biophysical Signatures across Molecularly Defined Medial Amygdala Neuronal Subpopulations. ENeuro, 2020, 7, ENEURO.0035-20.2020.	1.9	11
5	Development of Limbic System Stress-Threat Circuitry. Masterclass in Neuroendocrinology, 2020, , 317-343.	0.1	2
6	<i>PAC1R</i> Genotype to Phenotype Correlations in Autism Spectrum Disorder. Autism Research, 2019, 12, 200-211.	3.8	4
7	Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron, 2017, 96, 387-401.e6.	8.1	66
8	Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues. ELife, 2017, 6, .	6.0	34
9	Molecular and behavioral profiling of Dbx1-derived neurons in the arcuate, lateral and ventromedial hypothalamic nuclei. Neural Development, 2016, 11, 12.	2.4	12
10	Rescue of deficient amygdala tonic γâ€aminobutyric acidergic currents in the <i>Fmr</i> ^{–/y} mouse model of fragile X syndrome by a novel γâ€aminobutyric acid type A receptorâ€positive allosteric modulator. Journal of Neuroscience Research, 2016, 94, 568-578.	2.9	9
11	Specification of Select Hypothalamic Circuits and Innate Behaviors by the Embryonic Patterning Gene Dbx1. Neuron, 2015, 86, 403-416.	8.1	37
12	Neonatal NMDA Receptor Blockade Disrupts Spike Timing and Glutamatergic Synapses in Fast Spiking Interneurons in a NMDA Receptor Hypofunction Model of Schizophrenia. PLoS ONE, 2014, 9, e109303.	2.5	13
13	Deficient tonic GABAergic conductance and synaptic balance in the fragile X syndrome amygdala. Journal of Neurophysiology, 2014, 112, 890-902.	1.8	66
14	Wired for behaviors: from development to function of innate limbic system circuitry. Frontiers in Molecular Neuroscience, 2012, 5, 55.	2.9	117
15	Developmental mechanisms for the generation of telencephalic interneurons. Developmental Neurobiology, 2011, 71, 710-732.	3.0	43
16	Pax6 Is Required at the Telencephalic Pallial-Subpallial Boundary for the Generation of Neuronal Diversity in the Postnatal Limbic System. Journal of Neuroscience, 2011, 31, 5313-5324.	3.6	41
17	Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala. Neural Development, 2010, 5, 14.	2.4	52
18	Defective GABAergic Neurotransmission and Pharmacological Rescue of Neuronal Hyperexcitability in the Amygdala in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 2010, 30, 9929-9938.	3.6	275

#	Article	IF	CITATIONS
19	<i>Emx1</i> -Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala. Journal of Neuroscience, 2009, 29, 15933-15946.	3 . 6	68
20	Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala. Nature Neuroscience, 2009, 12, 141-149.	14.8	139
21	Regulation of neural progenitor cell development in the nervous system. Journal of Neurochemistry, 2008, 106, 2272-2287.	3.9	116
22	In vivo quantum dot labeling of mammalian stem and progenitor cells. Developmental Dynamics, 2007, 236, 3393-3401.	1.8	97
23	Cell Migration along the Lateral Cortical Stream to the Developing Basal Telencephalic Limbic System. Journal of Neuroscience, 2006, 26, 11562-11574.	3.6	87
24	The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype. Neuron, 2005, 48, 591-604.	8.1	505
25	Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development (Cambridge), 2003, 130, 4895-4906.	2.5	110
26	The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neuroscience, 2002, 5, 1279-1287.	14.8	511
27	Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nature Neuroscience, 2001, 4, 1177-1182.	14.8	280