Terry G Ireland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/723931/publications.pdf

Version: 2024-02-01

430874 330143 1,511 66 18 37 citations h-index g-index papers

67 67 67 1295 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Effect of Particle Morphology and Crystallite Size on the Upconversion Luminescence Properties of Erbium and Ytterbium Co-doped Yttrium Oxide Phosphors. Journal of Physical Chemistry B, 2001, 105, 948-953.	2.6	236
2	Control of  Y 2 O 3:Eu Spherical Particle Phosphor Size, Assembly Properties, and Performance f and HDTV. Journal of the Electrochemical Society, 1999, 146, 4654-4658.	or FED	180
3	Engineering phosphors for field emission displays. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 750.	1.6	147
4	A New Application for Microgels:Â Novel Method for the Synthesis of Spherical Particles of the Y2O3:Eu Phosphor Using a Copolymer Microgel of NIPAM and Acrylic Acid. Langmuir, 2001, 17, 7145-7149.	3. 5	127
5	Yttrium Oxide Upconverting Phosphors. 3. Upconversion Luminescent Emission from Europium-Doped Yttrium Oxide under 632.8 nm Light Excitation. Journal of Physical Chemistry B, 2001, 105, 9107-9112.	2.6	58
6	The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochimica Et Cosmochimica Acta, 2000, 64, 2719-2725.	3.9	56
7	Yttrium Oxide Upconverting Phosphors. Part 2:  Temperature Dependent Upconversion Luminescence Properties of Erbium in Yttrium Oxide. Journal of Physical Chemistry B, 2001, 105, 7200-7204.	2.6	48
8	Cathodoluminescence and Photoluminescence of YPO ₄ :Pr ³⁺ , Y ₂ SiO ₅ :Pr ³⁺ , YBO ₃ :Pr ³⁺ , and YPO ₄ :Bi ³⁺ . ECS Journal of Solid State Science and Technology, 2017, 6, R47-R52.	1.8	34
9	Novel nano-structured phosphor materials cast from natural <i>Morpho</i> butterfly scales. Journal of Modern Optics, 2005, 52, 999-1007.	1.3	31
10	AC powder electroluminescent displays. Journal of the Society for Information Display, 2011, 19, 798-810.	2.1	27
11	Improved photovoltaic performance of monocrystalline silicon solar cell through luminescent downâ€converting Gd ₂ O ₂ S:Tb ³⁺ phosphor. Progress in Photovoltaics: Research and Applications, 2019, 27, 640-651.	8.1	27
12	Luminescence properties of \hat{l} ±-Ag2WO4 nanorods co-doped with Li+ and Eu3+ cations and their effects on its structure. Journal of Luminescence, 2019, 206, 442-454.	3.1	27
13	Photonic phosphors based on cubic Y2O3:Tb3Âinfilled into a synthetic opal lattice. Journal of Optics, 2003, 5, S81-S85.	1.5	23
14	Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas. Nanotechnology, 2008, 19, 095302.	2.6	23
15	Cathodoluminescence of Nanocrystalline Y ₂ O ₃ :Eu ³⁺ with Various Eu ³⁺ Concentrations. ECS Journal of Solid State Science and Technology, 2015, 4, R1-R9.	1.8	22
16	Ultraviolet and blue cathodoluminescence from cubic Y ₂ O ₃ and Y ₂ O ₃ :Eu ³⁺ generated in a transmission electron microscope. Journal of Materials Chemistry C, 2016, 4, 7026-7034.	5.5	22
17	Up-conversion emission phosphors based on doped silica glass ceramics prepared by sol–gel methods: control of silica glass ceramics containing anatase and rutile crystallites. Journal of Materials Chemistry, 2001, 11, 1447-1451.	6.7	21
18	Fine Control of the Dopant Level in Cubic Y[sub 2]O[sub 3]:Eu[sup 3+] Phosphors. Journal of the Electrochemical Society, 2004, 151, H66.	2.9	20

#	Article	IF	Citations
19	Facile Self-Assembly of Yttrium Oxide Europium Phosphor from Solution Using a Sacrificial Micellar Phase. Electrochemical and Solid-State Letters, 1999, 2, 52.	2.2	19
20	Yttrium Oxide Upconverting Phosphors. Part 4:  Upconversion Luminescent Emission from Thulium-Doped Yttrium Oxide under 632.8-nm Light Excitation. Journal of Physical Chemistry B, 2003, 107, 1548-1553.	2.6	18
21	Low-voltage cathodoluminescent red emitting phosphors for field emission displays. Journal of Luminescence, 2007, 122-123, 562-566.	3.1	17
22	Characterisation of Gd2O2S:Pr phosphor screens for water window X-ray detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 434-439.	1.6	17
23	Red Shift of CT-Band in Cubic Y ₂ O ₃ :Eu ³⁺ upon Increasing the Eu ³⁺ Concentration. ECS Journal of Solid State Science and Technology, 2016, 5, R59-R66.	1.8	17
24	Facile method of infilling photonic silica templates with rare earth element oxide phosphor precursors. Journal of Materials Research, 2004, 19, 1656-1661.	2.6	16
25	A Synthetic Method for the Production of a Range of Particle Sizes for Y[sub 2]O[sub 3]:Eu Phosphors Using a Copolymer Microgel of NIPAM and AMPS. Journal of the Electrochemical Society, 2002, 149, H53.	2.9	15
26	Cathodoluminescence of Powder Layers of Nanometer-Sized Y ₂ O ₃ :Eu and Micrometer-Sized ZnO:Zn Phosphor Particles. ECS Journal of Solid State Science and Technology, 2013, 2, R201-R207.	1.8	15
27	Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y ₂ O ₃ :Tb ³⁺ . ECS Journal of Solid State Science and Technology, 2015, 4, R105-R113.	1.8	14
28	Photoluminescence, cathodoluminescence and micro-Raman investigations of monoclinic nanometre-sized Y2O3 and Y2O3:Eu3+. Journal of Materials Chemistry C, 2016, 4, 8930-8938.	5.5	14
29	Low temperature micro Raman and laser induced upconversion and downconversion spectra of europium doped silver tungstate Ag2â°3xEuxWO4 nanorods. Journal of Materials Science: Materials in Electronics, 2017, 28, 7029-7035.	2.2	13
30	Crystal structure, photoluminescence and cathodoluminescence of Sr _{1-x} Ca _x Al ₂ O ₄ doped with Eu ²⁺ . Optical Materials Express, 2019, 9, 2175.	3.0	13
31	Rare-earth element anti-Stokes emission from three inverse photonic lattices. Journal of Modern Optics, 2002, 49, 965-976.	1.3	12
32	Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y ₂ O ₃ :Tb ³⁺ . ECS Journal of Solid State Science and Technology, 2015, 4, R145-R152.	1.8	12
33	Structure and luminescence analyses of simultaneously synthesised (Lu _{1â^'x} Gd _x) ₂ O ₂ S:Tb ³⁺ and (Lu _{1â^'x} Gd _x) ₂ O ₃ :Tb ³⁺ . Dalton Transactions. 2017. 46. 7693-7707.	3.3	11
34	P-80: A New Oxide/Oxysulfide Based Phosphor Triad and High-Efficiency Green-Emitting (Y,Gd)[sub 2]O[sub 2]S:Tb Phosphor for FED Applications. Digest of Technical Papers SID International Symposium, 2005, 36, 594.	0.3	10
35	Structure and Morphology of ACEL ZnS:Cu,Cl Phosphor Powder Etched by Hydrochloric Acid. Journal of the Electrochemical Society, 2009, 156, J326.	2.9	10
36	Studies on the Orientation of ACEL ZnS:Cu Particles in Applied AC Fields. ECS Journal of Solid State Science and Technology, 2014, 3, R25-R32.	1.8	10

#	Article	IF	CITATIONS
37	Investigating the Emission Characteristics of Single Crystal YAG When Activated by High Power Laser Beams. ECS Journal of Solid State Science and Technology, 2016, 5, R172-R177.	1.8	10
38	Nanosized (Y _{1â^'x} Gd _x) ₂ O ₂ S:Tb ³⁺ particles: synthesis, photoluminescence, cathodoluminescence studies and a model for energy transfer in establishing the roles of Tb ³⁺ and Gd ³⁺ . RSC Advances, 2016, 6, 42561-42571.	3 . 6	9
39	Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope. Ultramicroscopy, 2015, 157, 27-34.	1.9	8
40	Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+. Journal of Luminescence, 2018, 196, 337-346.	3.1	8
41	On the Photo- and Cathodoluminescence of LaB ₃ O ₆ :Gd,Bi, Y ₃ Al ₅ O ₁₂ :Pr, Y ₃ Al ₅ O ₁₂ :Gd, Lu ₃ Al ₅ O ₁₂ :Pr, and Lu ₃ Al ₅ O ₁₂ :Gd. ECS Journal of Solid State Science and Technology,	1.8	8
42	Experimental and theoretical luminous efficacies of phosphors used in combination with blueâ€emitting LEDs for lighting and backlighting. Journal of the Society for Information Display, 2008, 16, 359-366.	2.1	7
43	Development of high temperature, radiation hard detectors based on diamond. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 845, 128-131.	1.6	7
44	Cathodoluminescence of Y ₂ O ₃ :Ln ³⁺ (Ln = Tb, Er and Tm) and Y ₂ O ₃ :Bi ³⁺ nanocrystalline particles at 200 keV. RSC Advances, 2018, 8, 396-405.	3 . 6	7
45	Laser-Activated Luminescence of BaAl ₂ O ₄ :Eu. ECS Journal of Solid State Science and Technology, 2020, 9, 026001.	1.8	7
46	Cathodoluminescence of Double Layers of Phosphor Particles. ECS Journal of Solid State Science and Technology, 2014, 3, R53-R59.	1.8	6
47	37â€4: Micro LED Defect Analysis via Photoluminescent and Cathodoluminescent Imaging. Digest of Technical Papers SID International Symposium, 2020, 51, 532-535.	0.3	6
48	Early defect identification for micro lightâ€emitting diode displays via photoluminescent and cathodoluminescent imaging. Journal of the Society for Information Display, 2021, 29, 264-274.	2.1	6
49	Photoluminescence and cathodoluminescence of BaAl ₂ O ₄ :Eu ²⁺ and undoped BaAl ₂ O ₄ : evidence for F-centres. Optical Materials Express, 2020, 10, 1962.	3.0	6
50	Achieving structured colour in inorganic systems: Learning from the natural world. Optics and Laser Technology, 2011, 43, 401-409.	4.6	5
51	Pâ€121: Subâ€micrometre Phosphor Preparation for Next Generation Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 1711-1714.	0.3	5
52	New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials. Materials, 2017, 10, 312.	2.9	5
53	Ultrathin Y2O3:Eu3+nanodiscs: spectroscopic investigations and evidence for reduced concentration quenching. Nanotechnology, 2018, 29, 455703.	2.6	5
54	Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam. Optical Engineering, 2006, 45, 024001.	1.0	3

#	Article	IF	CITATIONS
55	Crystal structure, photoluminescence and cathodoluminescence of Ba _{1-x} Sr _x Al ₂ O ₄ doped with Eu ²⁺ . Optical Materials Express, 2020, 10, 1951.	3.0	3
56	63.3: Enhanced Cathodoluminescence of a Double Layer of two Phosphors. Digest of Technical Papers SID International Symposium, 2012, 43, 861-864.	0.3	2
57	ZnCdS:Cu,Al,Cl: A Near Infra-Red Emissive Family of Phosphors for Marking, Coding, and Identification. ECS Journal of Solid State Science and Technology, 2018, 7, R3057-R3063.	1.8	2
58	Crystal structure, photoluminescence and cathodoluminescence of Ba1-xCaxAl2O4 doped with Eu2+. Optical Materials Express, 2019, 9, 3895.	3.0	2
59	Studies on the binding of nitrogenous bases to protoporphyrin IX iron(II) in aqueous solution at high pH values. Journal of Biological Inorganic Chemistry, 2022, 27, 297-313.	2.6	2
60	The use of a novel phosphor screen for visualising the infrared beam of a gas detector. , 2005, 5826, 425.		0
61	Raman Scattering from Industrially Prepared Nanometer Sized Particles of Monoclinic and Cubic Phases of Yttrium Europium Oxide Phosphors. , 2010, , .		O
62	A novel approach for the preparation of discrete phosphor nanoparticles. Proceedings of SPIE, 2010, , .	0.8	0
63	A Study of Small Particle Yttrium Oxide Type Phosphors prepared from Solution using a Sacrificial Micellar Phase as a Combustion Fuel. , 2010, , .		O
64	Cathodoluminescence studies of phosphors in a scanning electron microscope. Journal of Physics: Conference Series, 2015, 619, 012051.	0.4	0
65	Paper No S10.4: Transmission Electron Microscope Study of Symmetry-related Transitions in Cubic Y2O3:Tb3+. Digest of Technical Papers SID International Symposium, 2015, 46, 45-45.	0.3	0
66	Materials Suitable for preparing Inorganic Nanocasts of butterflies and other insects. Journal of Physics: Conference Series, 2015, 619, 012050.	0.4	0