

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7238818/publications.pdf Version: 2024-02-01

lie Li

#	Article	IF	CITATIONS
1	Awake Prone Positioning in Non-Intubated Patients With Acute Hypoxemic Respiratory Failure Due to COVID-19. Respiratory Care, 2022, 67, 102-114.	0.8	28
2	Aerosol Delivery via Continuous High-Frequency Oscillation During Mechanical Ventilation. Respiratory Care, 2022, 67, 415-420.	0.8	0
3	Efficacy of Various Mitigation Devices in Reducing Fugitive Emissions from Nebulizers. Respiratory Care, 2022, 67, 394-403.	0.8	9
4	Mitigating Fugitive Aerosols During Aerosol Delivery via High-Flow Nasal Cannula Devices. Respiratory Care, 2022, 67, 404-414.	0.8	5
5	The Impact of High-Flow Nasal Cannula Device, Nebulizer Type, and Placement on Trans-Nasal Aerosol Drug Delivery. Respiratory Care, 2022, 67, 1-8.	0.8	7
6	High-Flow Nasal Cannula Failure Odds Is Largely Independent of Duration of Use in COVID-19. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1240-1243.	2.5	8
7	Awake prone positioning for non-intubated patients with COVID-19-related acute hypoxaemic respiratory failure: a systematic review and meta-analysis. Lancet Respiratory Medicine,the, 2022, 10, 573-583.	5.2	73
8	High-Flow Oxygen vs Conventional Oxygen and Invasive Mechanical Ventilation and Clinical Recovery in Patients With Severe COVID-19. JAMA - Journal of the American Medical Association, 2022, 327, 1092.	3.8	0
9	Factors for success of awake prone positioning in patients with COVID-19-induced acute hypoxemic respiratory failure: analysis of a randomized controlled trial. Critical Care, 2022, 26, 84.	2.5	40
10	Aerosol-Generating Procedures and Virus Transmission. Respiratory Care, 2022, 67, 1022-1042.	0.8	11
11	In-Vitro Comparison of Single Limb and Dual Limb Circuit for Aerosol Delivery via Noninvasive Ventilation. Respiratory Care, 2022, 67, 807-813.	0.8	3
12	Rethinking the efficacy of awake prone positioning in COVID-19-related acute hypoxaemic respiratory failure – Authors' reply. Lancet Respiratory Medicine,the, 2022, 10, e54.	5.2	1
13	Lung ultrasound response to awake prone positioning predicts the need for intubation in patients with COVID-19 induced acute hypoxemic respiratory failure: an observational study. Critical Care, 2022, 26, .	2.5	10
14	Reliability of Smartphone Pulse Oximetry in Subjects at Risk for Hypoxemia. Respiratory Care, 2021, 66, 384-390.	0.8	10
15	Prone positioning for patients intubated for severe acute respiratory distress syndrome (ARDS) secondary to COVID-19: a retrospective observational cohort study. British Journal of Anaesthesia, 2021, 126, 48-55.	1.5	81
16	Airborne Particulate Concentrations During and After Pulmonary Function Testing. Chest, 2021, 159, 1570-1574.	0.4	17
17	Narrative review of practical aspects of aerosol delivery via high-flow nasal cannula. Annals of Translational Medicine, 2021, 9, 590-590.	0.7	11
18	Worldwide Clinical Practice of High-Flow Nasal Cannula and Concomitant Aerosol Therapy in the Adult ICU Setting. Respiratory Care, 2021, 66, 1416-1424.	0.8	14

#	Article	IF	CITATIONS
19	High-Flow Nasal Cannula for COVID-19 Patients: A Multicenter Retrospective Study in China. Frontiers in Molecular Biosciences, 2021, 8, 639100.	1.6	20
20	Management of Postoperative Hypoxemia. Respiratory Care, 2021, 66, 1136-1149.	0.8	9
21	Exploring and Creating New Evidence in a Pandemic Plays a Crucial Role in Guiding Clinical Practice. Respiratory Care, 2021, 66, 1039-1040.	0.8	2
22	The Use of Aerosolized Medications in Adult Intensive Care Unit Patients: A Prospective, Multicenter, Observational, Cohort Study. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, 34, 383-391.	0.7	4
23	The Association Between Upper Airway Patency and Speaking Valve Trial Tolerance for Patients With Tracheostomy: A Clinical Retrospective Study and an In Vitro Study. American Journal of Speech-Language Pathology, 2021, 30, 1728-1736.	0.9	5
24	How to Safely Reopen Cardiopulmonary Rehabilitation Facilities. Chest, 2021, 160, 405-406.	0.4	0
25	Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. Lancet Respiratory Medicine,the, 2021, 9, 1387-1395.	5.2	259
26	In-vitro and in-vivo comparisons of high versus low concentrations of inhaled epoprostenol to adult intubated patients. Respiratory Research, 2021, 22, 231.	1.4	2
27	Aerosol particle concentrations with different oxygen devices and interfaces for spontaneous breathing patients with tracheostomy: a randomised crossover trial. ERJ Open Research, 2021, 7, 00486-2021.	1.1	2
28	Early versus late awake prone positioning in non-intubated patients with COVID-19. Critical Care, 2021, 25, 340.	2.5	39
29	Placing a mask on COVID-19 patients during high-flow nasal cannula therapy reduces aerosol particle dispersion. ERJ Open Research, 2021, 7, 00519-2020.	1.1	31
30	Bronchodilator Delivery via High-Flow Nasal Cannula: A Randomized Controlled Trial to Compare the Effects of Gas Flows. Pharmaceutics, 2021, 13, 1655.	2.0	5
31	Optimizing high-flow nasal cannula flow settings in adult hypoxemic patients based on peak inspiratory flow during tidal breathing. Annals of Intensive Care, 2021, 11, 164.	2.2	8
32	Prone positioning might reduce the need for intubation in people with severe COVID-19 – Authors' reply. Lancet Respiratory Medicine,the, 2021, 9, e111.	5.2	5
33	In vitro comparison of unit dose vs infusion pump administration of albuterol via highâ€flow nasal cannula in toddlers. Pediatric Pulmonology, 2020, 55, 322-329.	1.0	8
34	Defining the optimal role of highâ€flow nasal cannula in pediatric procedural sedation. Pediatric Pulmonology, 2020, 55, 3225-3227.	1.0	7
35	<p>High-Flow Nasal Cannula for Chronic Obstructive Pulmonary Disease with Acute Compensated Hypercapnic Respiratory Failure: A Randomized, Controlled Trial</p> . International Journal of COPD, 2020, Volume 15, 3051-3061.	0.9	20
36	Awake prone positioning of hypoxaemic patients with COVID-19: protocol for a randomised controlled open-label superiority meta-trial. BMJ Open, 2020, 10, e041520.	0.8	14

#	Article	IF	CITATIONS
37	Meta-trial of awake prone positioning with nasal high flow therapy: Invitation to join a pandemic collaborative research effort. Journal of Critical Care, 2020, 60, 140-142.	1.0	11
38	Reducing Aerosol-Related Risk of Transmission in the Era of COVID-19: An Interim Guidance Endorsed by the International Society of Aerosols in Medicine. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2020, 33, 300-304.	0.7	85
39	Practical strategies to reduce nosocomial transmission to healthcare professionals providing respiratory care to patients with COVID-19. Critical Care, 2020, 24, 571.	2.5	29
40	High-flow nasal cannula for COVID-19 patients: risk of bio-aerosol dispersion. European Respiratory Journal, 2020, 56, 2003136.	3.1	15
41	High-Flow Aerosol-Dispersing versus Aerosol-Generating Procedures. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1069-1071.	2.5	17
42	A narrative review on trans-nasal pulmonary aerosol delivery. Critical Care, 2020, 24, 506.	2.5	25
43	An evaluation of manual tidal volume and respiratory rate delivery during simulated resuscitation. American Journal of Emergency Medicine, 2020, 45, 446-450.	0.7	2
44	Author Response to the Letter Entitled "A Good and Reliable Bronchodilator Dose-Response Relationship― Respiration, 2020, 99, 699-699.	1.2	0
45	The utilization of aerosol therapy in mechanical ventilation patients: a prospective multicenter observational cohort study and a review of the current evidence. Annals of Translational Medicine, 2020, 8, 1071-1071.	0.7	9
46	Year in Review 2019: High-Flow Nasal Cannula Oxygen Therapy for Adult Subjects. Respiratory Care, 2020, 65, 545-557.	0.8	39
47	Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 651-659.	2.5	285
48	Aerosol Delivery During Continuous High Frequency Oscillation for Simulated Adults During Quiet and Distressed Spontaneous Breathing. Respiratory Care, 2020, 65, 227-232.	0.8	6
49	The Clinical Impact of Flow Titration on Epoprostenol Delivery via High Flow Nasal Cannula for ICU Patients with Pulmonary Hypertension or Right Ventricular Dysfunction: A Retrospective Cohort Comparison Study. Journal of Clinical Medicine, 2020, 9, 464.	1.0	18
50	High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. European Respiratory Journal, 2020, 55, 2000892.	3.1	219
51	Effects of Inhaled Epoprostenol and Prone Positioning in Intubated Coronavirus Disease 2019 Patients With Refractory Hypoxemia. , 2020, 2, e0307.		17
52	In vitro comparison between inspiration synchronized and continuous vibrating mesh nebulizer during trans-nasal aerosol delivery. Intensive Care Medicine Experimental, 2020, 8, 6.	0.9	9
53	The clinicopathological study of lung cancer concealed in end-stage of interstitial lung disease. Translational Cancer Research, 2020, 9, 536-546.	0.4	1
54	Dose Response to Transnasal Pulmonary Administration of Bronchodilator Aerosols via Nasal High-Flow Therapy in Adults with Stable Chronic Obstructive Pulmonary Disease and Asthma. Respiration, 2019, 98, 401-409.	1.2	17

#	Article	IF	CITATIONS
55	Efficacy of High-Flow Nasal Cannula vs Standard Oxygen Therapy or Nasal Continuous Positive Airway Pressure in Children with Respiratory Distress: A Meta-Analysis. Journal of Pediatrics, 2019, 215, 199-208.e8.	0.9	46
56	Epoprostenol Delivered via High Flow Nasal Cannula for ICU Subjects with Severe Hypoxemia Comorbid with Pulmonary Hypertension or Right Heart Dysfunction. Pharmaceutics, 2019, 11, 281.	2.0	25
57	Effects of flow rate on transnasal pulmonary aerosol delivery of bronchodilators via high-flow nasal cannula for patients with COPD and asthma: protocol for a randomised controlled trial. BMJ Open, 2019, 9, e028584.	0.8	3
58	Artificial Cough Maneuvers: A New Method of Secretion Clearance?. Respiratory Care, 2019, 64, 487-488.	0.8	1
59	The Ratio of Nasal Cannula Gas Flow to Patient Inspiratory Flow on Trans-nasal Pulmonary Aerosol Delivery for Adults: An in Vitro Study. Pharmaceutics, 2019, 11, 225.	2.0	24
60	Comparison of high flow nasal cannula with noninvasive ventilation in chronic obstructive pulmonary disease patients with hypercapnia in preventing postextubation respiratory failure: A pilot randomized controlled trial. Research in Nursing and Health, 2019, 42, 217-225.	0.8	52
61	Decrease the flow setting to improve transâ€nasal pulmonary aerosol delivery via "highâ€flow nasal cannula―to infants and toddlers. Pediatric Pulmonology, 2019, 54, 914-921.	1.0	27
62	More than just a screen to liberate from mechanical ventilation: treat to keep extubated?. Annals of Translational Medicine, 2019, 7, S338-S338.	0.7	1
63	1315. Critical Care Medicine, 2019, 47, 634.	0.4	1
64	Comment: Inhaled Epoprostenol Through Noninvasive Routes of Ventilator Support Systems. Annals of Pharmacotherapy, 2019, 53, 326-326.	0.9	2
65	Respiratory Care Education and Clinical Practice in Mainland China. Respiratory Care, 2018, 63, 1239-1245.	0.8	11
66	Late Breaking Abstract - Comparison of High Flow Nasal Cannula with Noninvasive Ventilation in Facilitating Weaning COPD From Invasive Ventilation: A Prospective Randomized Controlled Study. , 2018, , .		0
67	Late Breaking Abstract - Explore the effective dose of bronchodilator nebulization via high flow nasal cannula in adult COPD and asthma patients. , 2018, , .		0
68	Evaluation of the Safety and Effectiveness of the Rapid Flow Expulsion Maneuver to Clear Subglottic Secretions in Vitro and in Vivo. Respiratory Care, 2017, 62, 1007-1013.	0.8	7
69	Pulmonary rehabilitation after lung transplantation with severe complications: A case report. Canadian Journal of Respiratory Therapy, 2017, 53, 45-47.	0.2	1
70	Survey of Prolonged Mechanical Ventilation in Intensive Care Units in Mainland China. Respiratory Care, 2016, 61, 1224-1231.	0.8	21
71	<scp>ARDS</scp> associated with pneumonia caused by avian influenza <scp>A H</scp> 7 <scp>N</scp> 9 virus treated with extracorporeal membrane oxygenation. Clinical Respiratory Journal, 2015, 9, 380-384.	0.6	12
72	Successful extracorporeal membrane oxygenation therapy as a bridge to sequential bilateral lung transplantation for a patient after severe paraquat poisoning. Clinical Toxicology, 2015, 53, 908-913.	0.8	21

#	Article	IF	CITATIONS
73	Respiratory Care Practices and Requirements for Respiratory Therapists in Beijing Intensive Care Units. Respiratory Care, 2012, 57, 370-376.	0.8	13