Tarek A Kandiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7238411/publications.pdf Version: 2024-02-01

TADER A KANDIEL

#	Article	IF	CITATIONS
1	Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts. Chemistry of Materials, 2010, 22, 2050-2060.	6.7	394
2	Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochemical and Photobiological Sciences, 2013, 12, 602-609.	2.9	188
3	Photocatalytic Activities of Different Well-defined Single Crystal TiO ₂ Surfaces: Anatase versus Rutile. Journal of Physical Chemistry Letters, 2011, 2, 2461-2465.	4.6	164
4	A Facile Surface Passivation of Hematite Photoanodes with TiO ₂ Overlayers for Efficient Solar Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 24053-24062.	8.0	164
5	Enhanced Photoelectrochemical Water Oxidation on Nanostructured Hematite Photoanodes via p-CaFe ₂ O ₄ /n-Fe ₂ O ₃ Heterojunction Formation. Journal of Physical Chemistry C, 2015, 119, 5864-5871.	3.1	130
6	Bi ₂ WO ₆ Inverse Opals: Facile Fabrication and Efficient Visibleâ€Lightâ€Driven Photocatalytic and Photoelectrochemical Waterâ€Splitting Activity. Small, 2011, 7, 2714-2720.	10.0	119
7	Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catalysis Today, 2011, 161, 196-201.	4.4	115
8	Long-term investigation of the photocatalytic hydrogen production on platinized TiO2: an isotopic study. Energy and Environmental Science, 2014, 7, 1420.	30.8	102
9	Direct Synthesis of Photocatalytically Active Rutile TiO ₂ Nanorods Partly Decorated with Anatase Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 4909-4915.	3.1	93
10	Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt–polypyrrole nanocomposites. Photochemical and Photobiological Sciences, 2009, 8, 683-690.	2.9	88
11	Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production. Physical Chemistry Chemical Physics, 2011, 13, 20155.	2.8	81
12	Novel (and better?) titania-based photocatalysts: Brookite nanorods and mesoporous structures. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 183-193.	3.9	78
13	Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity. Applied Catalysis A: General, 2013, 466, 32-37.	4.3	62
14	Structure–Activity Relationships of Hierarchical Three-Dimensional Electrodes with Photosystem II for Semiartificial Photosynthesis. Nano Letters, 2019, 19, 1844-1850.	9.1	61
15	Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Applied Surface Science, 2014, 319, 44-49.	6.1	47
16	Mechanisms of Photocatalytic Molecular Hydrogen and Molecular Oxygen Evolution over La-Doped NaTaO ₃ Particles: Effect of Different Cocatalysts and Their Specific Activity. ACS Catalysis, 2018, 8, 2313-2325.	11.2	46
17	Iron-incorporated NiS/Ni(OH)2 composite as an efficient electrocatalyst for hydrogen evolution reaction from water in a neutral medium. Applied Catalysis A: General, 2019, 586, 117226.	4.3	39
18	Enhancing the photocatalytic activity of TiO2 by pH control: a case study for the degradation of EDTA. Catalysis Science and Technology, 2013, 3, 3216.	4.1	37

TAREK A KANDIEL

#	Article	IF	CITATIONS
19	Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution. Journal of Materials Chemistry A, 2015, 3, 8896-8904.	10.3	33
20	Hematite photoanodes with size-controlled nanoparticles for enhanced photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2018, 236, 117-124.	20.2	33
21	Visible Light-Driven Photoelectrocatalytic Water Splitting Using Z-Scheme Ag-Decorated MoS ₂ /RGO/NiWO ₄ Heterostructure. ACS Omega, 2020, 5, 31644-31656.	3.5	29
22	Photocatalytic hydrogen production from biomass-derived compounds: a case study of citric acid. Environmental Technology (United Kingdom), 2016, 37, 2687-2693.	2.2	26
23	Solvent-induced deposition of Cu–Ga–In–S nanocrystals onto a titanium dioxide surface for visible-light-driven photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2016, 184, 264-269.	20.2	26
24	Modification of Hematite Photoanode with Cobalt Based Oxygen Evolution Catalyst via Bifunctional Linker Approach for Efficient Water Splitting. Journal of Physical Chemistry C, 2016, 120, 23415-23420.	3.1	20
25	TiO2(B)/anatase heterostructure nanofibers decorated with anatase nanoparticles as efficient photocatalysts for methanol oxidation. Journal of Molecular Catalysis A, 2016, 425, 55-60.	4.8	18
26	New application for TiO2 P25 photocatalyst: A case study of photoelectrochemical sensing of nitrite ions. Chemosphere, 2021, 268, 128847.	8.2	18
27	Nanoâ€5ized Quaternary CuGa ₂ In ₃ S ₈ as an Efficient Photocatalyst for Solar Hydrogen Production. ChemSusChem, 2014, 7, 3112-3121.	6.8	17
28	Physical Insights into Band Bending in Pristine and Co-Pi-Modified BiVO ₄ Photoanodes with Dramatically Enhanced Solar Water Splitting Efficiency. Journal of Physical Chemistry Letters, 2020, 11, 5015-5020.	4.6	16
29	Mechanistic Investigations of Photoelectrochemical Water and Methanol Oxidation on Well-Defined TiO ₂ Anatase (101) and Rutile (110) Surfaces. ACS Applied Energy Materials, 2019, 2, 5308-5318.	5.1	15
30	Specificity and Synergy at the Oil–Brine Interface: New Insights from Experiments and Molecular Dynamics Simulations. Energy & Fuels, 2021, 35, 14647-14657.	5.1	15
31	Boosting the efficiency of water oxidation <i>via</i> surface states on hematite photoanodes by incorporating Bi ³⁺ ions. Sustainable Energy and Fuels, 2020, 4, 4207-4218.	4.9	10
32	TiO ₂ Nanotubes Supported PtO _x Nanoclusters with Enhanced Mass Activity for Electrocatalytic Hydrogen Evolution. ChemCatChem, 2020, 12, 5411-5419.	3.7	9
33	Titanium Dioxide Nanoparticles and Nanostructures. Current Inorganic Chemistry, 2012, 2, 94-114.	0.2	9
34	Mechanistic investigation of water oxidation on hematite photoanodes using intensity-modulated photocurrent spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112825.	3.9	8
35	Synergy between in-situ immobilized MoS2 nanosheets and TiO2 nanotubes for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 2366-2377.	7.1	8
36	Visible light driven hydrogen evolution with a noble metal free CuGa ₂ In ₃ S ₈ nanoparticle system in water. Catalysis Science and Technology, 2016, 6, 6536-6541.	4.1	5

#	Article	IF	CITATIONS
37	Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges. Nanostructure Science and Technology, 2014, , 41-74.	0.1	3
38	Photocatalytic evolution of molecular hydrogen and oxygen over La-doped NaTaO3particles: Effect of different cocatalysts (Presentation Recording). , 2015		0

38 different cocatalysts (Presentation Recording). , 2015, , .