
H C Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7238157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Adaptive Responses to Hypertriglyceridemia and Bioactive Lipids. Antioxidants and Redox Signaling, 2022, 36, 953-968.	2.5	2
2	Mild Mitochondrial Uncoupling Decreases Experimental Atherosclerosis, A Proof of Concept. Journal of Atherosclerosis and Thrombosis, 2022, 29, 825-838.	0.9	10
3	Dichloroacetate reactivates pyruvate-supported peroxide removal by liver mitochondria and prevents NAFLD aggravation in NAD(P)+ transhydrogenase-null mice consuming a high-fat diet. European Journal of Pharmacology, 2022, 917, 174750.	1.7	3
4	Pro-inflammatory polarization of macrophages is associated with reduced endoplasmic reticulum-mitochondria interaction. Biochemical and Biophysical Research Communications, 2022, 606, 61-67.	1.0	5
5	Novel role of cholesteryl ester transfer protein (CETP): attenuation of adiposity by enhancing lipolysis and brown adipose tissue activity. Metabolism: Clinical and Experimental, 2021, 114, 154429.	1.5	8
6	The Presence of Cholesteryl Ester Transfer Protein (CETP) in Endothelial Cells Generates Vascular Oxidative Stress and Endothelial Dysfunction. Biomolecules, 2021, 11, 69.	1.8	11
7	Brazilian sunberry (Solanum oocarpum Sendtn): Alkaloid composition and improvement of mitochondrial functionality and insulin secretion of INS-1E cells. Food Research International, 2021, 148, 110589.	2.9	2
8	Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Molecular Aspects of Medicine, 2020, 71, 100840.	2.7	25
9	The Anti-atherogenic Role of Exercise Is Associated With the Attenuation of Bone Marrow-Derived Macrophage Activation and Migration in Hypercholesterolemic Mice. Frontiers in Physiology, 2020, 11, 599379.	1.3	4
10	Cholesteryl Ester Transfer Protein and Lipid Metabolism and Cardiovascular Diseases. Advances in Experimental Medicine and Biology, 2020, 1276, 15-25.	0.8	13
11	Diabetogenic effect of pravastatin is associated with insulin resistance and myotoxicity in hypercholesterolemic mice. Journal of Translational Medicine, 2019, 17, 285.	1.8	5
12	Identification of Suitable Reference Genes for Quantitative Gene Expression Analysis in Innervated and Denervated Adipose Tissue from Cafeteria Dietâ€Fed Rats. Lipids, 2019, 54, 231-244.	0.7	4
13	Coenzyme Q ₁₀ protects against βâ€cell toxicity induced by pravastatin treatment of hypercholesterolemia. Journal of Cellular Physiology, 2019, 234, 11047-11059.	2.0	10
14	Lack of mitochondrial NADP(H)-transhydrogenase expression in macrophages exacerbates atherosclerosis in hypercholesterolemic mice. Biochemical Journal, 2019, 476, 3769-3789.	1.7	12
15	Facilitation of Ca ²⁺ â€induced opening of the mitochondrial permeability transition pore either by nicotinamide nucleotide transhydrogenase deficiency or statins treatment. Cell Biology International, 2018, 42, 742-746.	1.4	9
16	<i>Mangifera indica</i> L. extract (Vimang®) reduces plasma and liver cholesterol and leucocyte oxidative stress in hypercholesterolemic LDL receptor deficient mice. Cell Biology International, 2018, 42, 747-753.	1.4	4
17	Increase in liver cytosolic lipases activities and VLDL-TAG secretion rate do not prevent the non-alcoholic fatty liver disease in cafeteria diet-fed rats. Biochimie, 2018, 150, 16-22.	1.3	7
18	Spontaneous experimental atherosclerosis in hypercholesterolemic mice advances with ageing and correlates with mitochondrial reactive oxygen species. Experimental Gerontology, 2018, 109, 47-50.	1.2	12

#	Article	IF	CITATIONS
19	Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radical Biology and Medicine, 2018, 129, 1-24.	1.3	90
20	Coenzyme Q10 or Creatine Counteract Pravastatin-Induced Liver Redox Changes in Hypercholesterolemic Mice. Frontiers in Pharmacology, 2018, 9, 685.	1.6	14
21	Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice. Lipids, 2017, 52, 981-990.	0.7	7
22	Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radical Biology and Medicine, 2017, 113, 190-202.	1.3	51
23	The role of cholesteryl ester transfer protein expression on endothelial cells: oxidative stress and vascular dysfunction. Free Radical Biology and Medicine, 2017, 108, S96.	1.3	1
24	Pravastatin Chronic Treatment Sensitizes Hypercholesterolemic Mice Muscle to Mitochondrial Permeability Transition: Protection by Creatine or Coenzyme Q10. Frontiers in Pharmacology, 2017, 8, 185.	1.6	32
25	Apolipoprotein CIII Overexpression-Induced Hypertriglyceridemia Increases Nonalcoholic Fatty Liver Disease in Association with Inflammation and Cell Death. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-18.	1.9	29
26	Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	20
27	Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice. Journal of Translational Medicine, 2016, 14, 213.	1.8	34
28	Chronic use of pravastatin reduces insulin exocytosis and increases β-cell death in hypercholesterolemic mice. Toxicology, 2016, 344-346, 42-52.	2.0	22
29	Cholesteryl Ester Transfer Protein (CETP) expression does not affect glucose homeostasis and insulin secretion: studies in human CETP transgenic mice. Lipids in Health and Disease, 2016, 15, 9.	1.2	4
30	Apolipoprotein CIII overexpression exacerbates diet-induced obesity due to adipose tissue higher exogenous lipid uptake and retention and lower lipolysis rates. Nutrition and Metabolism, 2015, 12, 61.	1.3	12
31	The Fatty Acid Synthase Inhibitor Orlistat Reduces the Growth and Metastasis of Orthotopic Tongue Oral Squamous Cell Carcinomas. Molecular Cancer Therapeutics, 2014, 13, 585-595.	1.9	106
32	Fibrates and fish oil, but not corn oil, up-regulate the expression of the cholesteryl ester transfer protein (CETP) gene. Journal of Nutritional Biochemistry, 2014, 25, 669-674.	1.9	21
33	Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice. British Journal of Nutrition, 2014, 111, 979-986.	1.2	34
34	Oxidative stress and susceptibility to mitochondrial permeability transition precedes the onset of diabetes in autoimmune non-obese diabetic mice. Free Radical Research, 2014, 48, 1494-1504.	1.5	20
35	Liver proteomic response to hypertriglyceridemia in human-apolipoprotein C-III transgenic mice at cellular and mitochondrial compartment levels. Lipids in Health and Disease, 2014, 13, 116.	1.2	8
36	Impaired compensatory betaâ€cell function and growth in response to highâ€fat diet in <scp>LDL</scp> receptor knockout mice. International Journal of Experimental Pathology, 2014, 95, 296-308.	0.6	22

#	Article	IF	CITATIONS
37	Fibrates and fish oil upregulate the expression of the cholesteryl ester transfer protein (cetp) gene. Atherosclerosis, 2014, 235, e180.	0.4	1
38	Activation of the mitochondrial ATP-sensitive K+ channel reduces apoptosis of spleen mononuclear cells induced by hyperlipidemia. Lipids in Health and Disease, 2013, 12, 87.	1.2	12
39	Cholesterol reduction ameliorates glucose-induced calcium handling and insulin secretion in islets from low-density lipoprotein receptor knockout mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 769-775.	1.2	16
40	A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radical Biology and Medicine, 2013, 63, 446-456.	1.3	225
41	Redox properties of mitochondria from C57BL/6J mice that lack NADP+â€ŧranshydrogenase activity due to spontaneous NNT mutation. FASEB Journal, 2013, 27, lb56.	0.2	Ο
42	A soyabean diet does not modify the activity of brown adipose tissue but alters the rate of lipolysis in the retroperitoneal white adipose tissue of male rats recovering from early-life malnutrition. British Journal of Nutrition, 2012, 108, 1042-1051.	1.2	4
43	The Role of Dyslipidemia on Ocular Surface, Lacrimal and Meibomian Gland Structure and Function. Current Eye Research, 2012, 37, 300-308.	0.7	20
44	Enhanced insulin secretion and glucose tolerance in rats exhibiting low plasma free fatty acid levels and hypertriglyceridaemia due to congenital albumin deficiency. Experimental Physiology, 2012, 97, 525-533.	0.9	3
45	The I405V and Taq1B polymorphisms of the CETP gene differentially affect sub-clinical carotid atherosclerosis. Lipids in Health and Disease, 2012, 11, 130.	1.2	4
46	The higher susceptibility of congenital analbuminemic rats to Ca2+-induced mitochondrial permeability transition is associated with the increased expression of cyclophilin D and nitrosothiol depletion. Molecular Genetics and Metabolism, 2011, 104, 521-528.	0.5	11
47	Inhibition of fatty acid synthase in melanoma cells activates the intrinsic pathway of apoptosis. Laboratory Investigation, 2011, 91, 232-240.	1.7	56
48	Lower expression of PKAα impairs insulin secretion in islets isolated from low-density lipoprotein receptor (LDLRâ^'/â^') knockout mice. Metabolism: Clinical and Experimental, 2011, 60, 1158-1164.	1.5	8
49	Mitochondrial energy metabolism and redox responses to hypertriglyceridemia. Journal of Bioenergetics and Biomembranes, 2011, 43, 19-23.	1.0	29
50	Distinct hepatic lipid profile of hypertriglyceridemic mice determined by easy ambient sonic-spray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 401, 1651-1659.	1.9	23
51	Cholesteryl ester transfer protein: The controversial relation to atherosclerosis and emerging new biological roles. IUBMB Life, 2011, 63, 248-257.	1.5	41
52	Cholesterol toxicity in pancreatic islets from LDL receptor-deficient mice. Diabetologia, 2010, 53, 2461-2462.	2.9	5
53	Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1210-1216.	0.5	29
54	Reversible flow of cholesteryl ester between high-density lipoproteins and triacylglycerol-rich particles is modulated by the fatty acid composition and concentration of triacylglycerols. Brazilian Journal of Medical and Biological Research, 2010, 43, 1135-1142.	0.7	2

#	Article	IF	CITATIONS
55	Primary hypercholesterolaemia impairs glucose homeostasis and insulin secretion in low-density lipoprotein receptor knockout mice independently of high-fat diet and obesity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 183-190.	1.2	31
56	Reduction of endoplasmic reticulum stress—A novel mechanism of action of statins in the protection against atherosclerosis. Atherosclerosis, 2010, 212, 30-31.	0.4	13
57	Lack of plasma albumin impairs intravascular lipolysis and explains the associated free fatty acids deficiency and hypertriglyceridemia. Lipids in Health and Disease, 2010, 9, 146.	1.2	10
58	Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity. Journal of Neuroscience, 2009, 29, 359-370.	1.7	886
59	Mitochondrial ATP-sensitive K+ channels as redox signals to liver mitochondria in response to hypertriglyceridemia. Free Radical Biology and Medicine, 2009, 47, 1432-1439.	1.3	35
60	Reactive oxygen species generation in peripheral blood monocytes and oxidized LDL are increased in hyperlipidemic patients. Clinical Biochemistry, 2009, 42, 1222-1227.	0.8	36
61	Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to the liver. Lipids in Health and Disease, 2009, 8, 50.	1.2	17
62	Cholesteryl ester transfer protein (CETP) increases postprandial triglyceridaemia and delays triacylglycerol plasma clearance in transgenic mice. Biochemical Journal, 2009, 419, 629-634.	1.7	20
63	Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. International Journal of Cancer, 2008, 123, 2557-2565.	2.3	138
64	Adverse effect of the anabolic–androgenic steroid mesterolone on cardiac remodelling and lipoprotein profile is attenuated by aerobicz exercise training. International Journal of Experimental Pathology, 2008, 89, 358-366.	0.6	24
65	Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Free Radical Biology and Medicine, 2008, 44, 444-451.	1.3	33
66	Mangifera indica L. extract (Vimang®) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. Pharmacological Research, 2008, 57, 332-338.	3.1	53
67	S12.36 Oxidative stress in hypercholesterolemic ldl receptor knockout mice: Role of mitochondrial nadp-linked substrates and intracellular calcium levels. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S84.	0.5	0
68	Hepatocyte nuclear phenotype: the cross-talk between anabolic androgenic steroids and exercise in transgenic mice. Histology and Histopathology, 2008, 23, 1367-77.	0.5	11
69	The Absence of Transthyretin does not Impair Regulation of Lipid and Glucose Metabolism. Hormone and Metabolic Research, 2007, 39, 529-533.	0.7	8
70	CETP expression enhances liver HDL-cholesteryl ester uptake but does not alter VLDL and biliary lipid secretion. Atherosclerosis, 2007, 191, 313-318.	0.4	23
71	Opposite lipemic response of Wistar rats and C57BL/6 mice to dietary glucose or fructose supplementation. Brazilian Journal of Medical and Biological Research, 2007, 40, 323-331.	0.7	20
72	Overexpression of apolipoprotein CIII increases and CETP reverses diet-induced obesity in transgenic mice. International Journal of Obesity, 2007, 31, 1586-1595.	1.6	34

#	Article	IF	CITATIONS
73	Mitochondrial Energy Metabolism and Redox State in Dyslipidemias. IUBMB Life, 2007, 59, 263-268.	1.5	22
74	Hyperlipidemic Mice Present Enhanced Catabolism and Higher Mitochondrial ATP-Sensitive K+ Channel Activity. Gastroenterology, 2006, 131, 1228-1234.	0.6	35
75	Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death: implications in cardiotoxicity, neurodegeneration and dyslipidemias. Frontiers in Bioscience - Landmark, 2006, 11, 2554.	3.0	66
76	REGULATION OF HEPATIC CHOLESTEROL METABOLISM IN CETP+/?/LDLr+/?MICE BY CHOLESTEROL FEEDING AND BY DRUGS (CHOLESTYRAMINE AND LOVASTATIN) THAT LOWER PLASMA CHOLESTEROL. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1209-1215.	0.9	11
77	Cholesteryl ester transfer protein gene mutations in Brazilian hyperalphalipoproteinemia. Clinical Genetics, 2006, 69, 455-457.	1.0	2
78	Statins induce calcium-dependent mitochondrial permeability transition. Toxicology, 2006, 219, 124-132.	2.0	70
79	Soy protein containing isoflavones favorably influences macrophage lipoprotein metabolism but not the development of atherosclerosis in CETP transgenic mice. Lipids, 2006, 41, 655-662.	0.7	3
80	Atherosclerosis is enhanced by testosterone deficiency and attenuated by CETP expression in transgenic mice. Journal of Lipid Research, 2006, 47, 1526-1534.	2.0	32
81	Effects of diabetes and CETP expression on diet-induced atherosclerosis in LDL receptor-deficient mice. Apmis, 2005, 113, 37-44.	0.9	9
82	High frequency of Fredrickson's phenotypes IV and IIb in Brazilians infected by human immunodeficiency virus. BMC Infectious Diseases, 2005, 5, 47.	1.3	9
83	Atherosclerosis in aged mice over-expressing the reverse cholesterol transport genes. Brazilian Journal of Medical and Biological Research, 2005, 38, 391-398.	0.7	9
84	Oxidative stress in atherosclerosisâ€prone mouse is due to low antioxidant capacity of mitochondria. FASEB Journal, 2005, 19, 1-14.	0.2	85
85	W08-P-029 Apolipoprotein CIII overexpression increases diet-induced visceral adiposity in transgenic mice. Atherosclerosis Supplements, 2005, 6, 37.	1.2	0
86	Chronic treatment with bark infusion fromCroton cajucaralowers plasma triglyceride levels in genetic hyperlipidemic mice. Canadian Journal of Physiology and Pharmacology, 2004, 82, 387-392.	0.7	8
87	Moderate hyperalphalipoproteinaemia in a Brazilian population is related to lipoprotein lipase activity, apolipoprotein A-I concentration, age and body mass index. Clinical Science, 2004, 106, 11-17.	1.8	7
88	Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition. Journal of Bioenergetics and Biomembranes, 2003, 35, 451-457.	1.0	21
89	Cholesteryl ester transfer protein expression is down-regulated in hyperinsulinemic transgenic mice. Journal of Lipid Research, 2003, 44, 1870-1876.	2.0	11
90	Cholesteryl ester transfer protein expression attenuates atherosclerosis in ovariectomized mice. Journal of Lipid Research, 2003, 44, 33-40.	2.0	52

#	Article	IF	CITATIONS
91	Plasma Glucose Regulation and Insulin Secretion in Hypertriglyceridemic Mice. Hormone and Metabolic Research, 2002, 34, 21-26.	0.7	20
92	Thyroid hormone increases plasma cholesteryl ester transfer protein activity and plasma high-density lipoprotein removal rate in transgenic mice. Metabolism: Clinical and Experimental, 2001, 50, 530-536.	1.5	26
93	Oxidation of LDL enhances the cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester transfer rate to HDL, bringing on a diminished net transfer of cholesteryl ester from HDL to oxidized LDL. Clinica Chimica Acta, 2001, 304, 99-106.	0.5	12
94	Plasma lipases and lipid transfer proteins increase phospholipid but not free cholesterol transfer from lipid emulsion to high density lipoproteins. BMC Biochemistry, 2001, 2, 1.	4.4	8
95	Sex differences in risk factors for coronary heart disease: a study in a Brazilian population. BMC Public Health, 2001, 1, 3.	1.2	22
96	Cholesteryl Ester Transfer Protein Activity Enhances Plasma Cholesteryl Ester Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1045-1052.	1.1	49
97	â€~In vitro' cholesteryl ester bidirectional flow between high-density lipoproteins and triglyceride-rich emulsions: effects of particle concentration and composition, cholesteryl ester transfer activity and oleic acid. Journal of Proteomics, 1996, 32, 45-57.	2.4	15
98	Human Cholesteryl Ester Transfer Protein Gene Proximal Promoter Contains Dietary Cholesterol Positive Responsive Elements and Mediates Expression in Small Intestine and Periphery While Predominant Liver and Spleen Expression Is Controlled by 5′-distal Sequences. Journal of Biological Chemistry, 1996, 271, 31831-31838.	1.6	48
99	Nagase analbuminemic rats have faster plasma triacylglycerol and VLDL synthesis rates. Lipids and Lipid Metabolism, 1994, 1212, 103-108.	2.6	10
100	Simultaneous measurements of chylomicron lipolysis and remnant removal using a doubly labeled artificial lipid emulsion: studies in normolipidemic and hyperlipidemic subjects Journal of Lipid Research, 1994, 35, 143-152.	2.0	27
101	Simultaneous measurements of chylomicron lipolysis and remnant removal using a doubly labeled artificial lipid emulsion: studies in normolipidemic and hyperlipidemic subjects. Journal of Lipid Research, 1994, 35, 143-52.	2.0	22
102	Effect of dietary fish oil on the rate of very low density lipoprotein triacylglycerol formation and on the metabolism of chylomicrons. Lipids, 1992, 27, 326-330.	0.7	24
103	Independent regulation of chylomicron lipolysis and particle removal rates: Effects of insulin and thyroid hormones on the metabolism of artificial chylomicrons. Metabolism: Clinical and Experimental, 1991, 40, 1122-1127.	1.5	17
104	Oral estradiol-17β raises the level of plasma high-density lipoprotein in menopausal women by slowing down its clearance rate. European Journal of Endocrinology, 1991, 125, 657-661.	1.9	11
105	Effects of simvastatin, bezafibrate and gemfibrozil on the quantity and composition of plasma lipoproteins. Atherosclerosis, 1990, 85, 211-217.	0.4	31
106	Competition between chylomicrons and their remnants for plasma removal: a study with artificial emulsion models of chylomicrons. Lipids and Lipid Metabolism, 1988, 958, 211-217.	2.6	40
107	The effects of Triton WR-1339, protamine sulfate and heparin on the plasma removal of emulsion models of chylomicrons and remnants in rats. Lipids and Lipid Metabolism, 1987, 917, 344-346.	2.6	28
108	Increased hepatic cholesterol production due to liver hypertrophy in rat experimental nephrosis. Lipids and Lipid Metabolism, 1982, 710, 71-75.	2.6	14