James A Nicell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7237954/publications.pdf

Version: 2024-02-01

81839 95218 4,873 87 39 68 citations g-index h-index papers 90 90 90 4342 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distribution and characteristics of wastewater treatment plants within the global river network. Earth System Science Data, 2022, 14, 559-577.	3.7	45
2	Highly Flexible Polylactide Food Packaging Plasticized with Nontoxic, Biosourced Glycerol Plasticizers. ACS Applied Polymer Materials, 2022, 4, 3608-3617.	2.0	19
3	Bioâ€based glycerol plasticizers for flexible poly(vinyl chloride) blends. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
4	Additives to prevent the formation of surface defects during poly(vinyl chloride) calendering. Polymer Engineering and Science, 2021, 61, 1209-1219.	1.5	3
5	Poly(εâ€caprolactone)â€based additives: Plasticization efficacy and migration resistance. Journal of Vinyl and Additive Technology, 2021, 27, 821-832.	1.8	9
6	Small molecule plasticizers for improved migration resistance: Investigation of branching and leaching behaviour in PVC blends. Materials Today Communications, 2021, 29, 102874.	0.9	11
7	Fully Renewable, Effective, and Highly Biodegradable Plasticizer: Di- <i>n</i> heptyl Succinate. ACS Sustainable Chemistry and Engineering, 2020, 8, 12409-12418.	3. 2	19
8	Laccase-Catalyzed Oxidation of Mixed Aqueous Phenolic Substrates at Low Concentrations. Catalysts, 2019, 9, 368.	1.6	6
9	Modelling the transient kinetics of laccase-catalyzed oxidation of four aqueous phenolic substrates at low concentrations. Biochemical Engineering Journal, 2018, 132, 233-243.	1.8	9
10	Designing Green Plasticizers: Linear Alkyl Diol Dibenzoate Plasticizers and a Thermally Reversible Plasticizer. Polymers, 2018, 10, 646.	2.0	15
11	How Green is Your Plasticizer?. Polymers, 2018, 10, 834.	2.0	102
12	Estimating the eco-toxicological risk of estrogens in China's rivers using a high-resolution contaminant fate model. Water Research, 2018, 145, 707-720.	5. 3	25
13	Risks associated with the environmental release of pharmaceuticals on the U.S. Food and Drug Administration "flush list― Science of the Total Environment, 2017, 609, 1023-1040.	3.9	39
14	Rheology of Green Plasticizer/Poly(vinyl chloride) Blends via Time–Temperature Superposition. Processes, 2017, 5, 43.	1.3	21
15	Designing green plasticizers: Influence of molecule geometry and alkyl chain length on the plasticizing effectiveness of diester plasticizers in PVC blends. Polymer, 2016, 89, 18-27.	1.8	100
16	Risk assessment of down-the-drain chemicals at large spatial scales: Model development and application to contaminants originating from urban areas in the Saint Lawrence River Basin. Science of the Total Environment, 2016, 541, 825-838.	3.9	42
17	A model of the transient kinetics of laccase-catalyzed oxidation of phenol at micromolar concentrations. Biochemical Engineering Journal, 2015, 99, 1-15.	1.8	13
18	Designing greener plasticizers: Effects of alkyl chain length and branching on the biodegradation of maleate based plasticizers. Chemosphere, 2015, 134, 106-112.	4.2	38

#	Article	IF	Citations
19	Human Health Relevance of Pharmaceutically Active Compounds in Drinking Water. AAPS Journal, 2015, 17, 558-585.	2.2	41
20	Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Applied Microbiology and Biotechnology, 2014, 98, 9967-9981.	1.7	316
21	Contraceptive Options and Their Associated Estrogenic Environmental Loads: Relationships and Trade-Offs. PLoS ONE, 2014, 9, e92630.	1.1	9
22	Biodegradation kinetics of dibenzoate plasticizers and their metabolites. Biochemical Engineering Journal, 2013, 70, 35-45.	1.8	11
23	Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol. Science of the Total Environment, 2012, 421-422, 144-162.	3.9	62
24	Refined sewer epidemiology mass balances and their application to heroin, cocaine and ecstasy. Environment International, 2011, 37, 1236-1252.	4.8	75
25	Optimal conditions for oxidative degradation of bisphenol A by Horseradish Peroxidase in aqueous phase. , $2011, , .$		0
26	Enzyme-Catalyzed Oxidation of $17 < i > \hat{l}^2 < /i >$ -Estradiol Using Immobilized Laccase from $< i > T$ rametes versicolor $< /i >$. Enzyme Research, 2011, 2011, 1-11.	1.8	11
27	Assessing the risk of exogenously consumed pharmaceuticals in land-applied human urine. Water Science and Technology, 2010, 62, 1335-1345.	1.2	8
28	Assessment of the Aquatic Release and Relevance of Selected Endogenous Chemicals: Androgens, Thyroids and Their <i>in Vivo</i> Metabolites. ACS Symposium Series, 2010, , 437-468.	0.5	1
29	Characterization of 1,5â€pentanediol dibenzoate as a potential "green―plasticizer for poly(vinyl) Tj ETQq1	1 0.78431 1.8	4 rgBT /Over
30	Assessment and regulation of odour impacts. Atmospheric Environment, 2009, 43, 196-206.	1.9	211
31	Relative rates and mechanisms of biodegradation of diester plasticizers mediated by <i>Rhodococcus rhodochrous</i> . Canadian Journal of Chemical Engineering, 2009, 87, 499-506.	0.9	10
32	Metabolites from the biodegradation of 1,6â€hexanediol dibenzoate, a potential green plasticizer, by <i>Rhodococcus rhodochrous</i> . Journal of Mass Spectrometry, 2009, 44, 662-671.	0.7	21
33	A comprehensive kinetic model of laccaseâ€catalyzed oxidation of aqueous phenol. Biotechnology Progress, 2009, 25, 763-773.	1.3	23
34	Mechanisms of biodegradation of dibenzoate plasticizers. Chemosphere, 2009, 77, 258-263.	4.2	27
35	Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polymer Degradation and Stability, 2008, 93, 1479-1485.	2.7	63
36	Biocatalytic oxidation of bisphenol A in a reverse micelle system using horseradish peroxidase. Bioresource Technology, 2008, 99, 4428-4437.	4.8	40

#	Article	IF	CITATIONS
37	Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresource Technology, 2008, 99, 7825-7834.	4.8	107
38	Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Research, 2008, 42, 153-162.	5. 3	71
39	Plasticizers and related toxic degradation products in wastewater sludges. Water Science and Technology, 2008, 57, 367-374.	1.2	20
40	Calibration of conceptual rainfall–runoff models using global optimisation methods with hydrologic process-based parameter constraints. Journal of Hydrology, 2007, 334, 455-466.	2.3	41
41	Horseradish peroxidaseâ€catalysed oxidation of aqueous natural and synthetic oestrogens. Journal of Chemical Technology and Biotechnology, 2007, 82, 818-830.	1.6	28
42	Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme and Microbial Technology, 2007, 41, 353-361.	1.6	85
43	Variable Stoichiometry during the Laccase-Catalyzed Oxidation of Aqueous Phenol. Biotechnology Progress, 2007, 23, 389-397.	1.3	16
44	Livestock Odour Dispersion as Affected by Natural Windbreaks. Water, Air, and Soil Pollution, 2007, 182, 263-273.	1.1	10
45	Effect of surfactants on plasticizer biodegradation by Bacillus subtilis ATCC 6633. Biodegradation, 2007, 18, 283-293.	1.5	7
46	Interaction of metabolites with R. rhodochrous during the biodegradation of di-ester plasticizers. Chemosphere, 2006, 65, 1510-1517.	4.2	31
47	Origin of 2-ethylhexanol as a VOC. Environmental Pollution, 2006, 140, 181-185.	3.7	67
48	Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A. Bioresource Technology, 2006, 97, 1431-1442.	4.8	158
49	Influence of windbreaks on livestock odour dispersion plume in the field. Agriculture, Ecosystems and Environment, 2006, 116, 263-272.	2.5	46
50	Laccase-catalyzed oxidation of bisphenol A with the aid of additives. Process Biochemistry, 2006, 41, 1029-1037.	1.8	66
51	Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous. Science of the Total Environment, 2006, 366, 286-294.	3.9	62
52	Laccase-catalysed oxidation of aqueous triclosan. Journal of Chemical Technology and Biotechnology, 2006, 81, 1344-1352.	1.6	72
53	A pseudo-steady state model of the kinetics of laccase-catalysed oxidation of aqueous phenol. Journal of Chemical Technology and Biotechnology, 2006, 81, 1198-1208.	1.6	6
54	Kinetic model of laccase-catalyzed oxidation of aqueous phenol. Biotechnology and Bioengineering, 2005, 91, 114-123.	1.7	21

#	Article	IF	Citations
55	Evaluation of Horseradish Peroxidase for the Treatment of Estrogenic Alkylphenols. Water Quality Research Journal of Canada, 2005, 40, 145-154.	1.2	14
56	A collective approach towards enhancing undergraduate engineering education. European Journal of Engineering Education, 2005, 30, 377-384.	1.5	4
57	Plasticizer metabolites in the environment. Water Research, 2004, 38, 3693-3698.	5.3	168
58	Expressions to relate population responses to odor concentration. Atmospheric Environment, 2003, 37, 4955-4964.	1.9	38
59	Biodegradation of plasticizers by <i>Rhodotorula rubra</i> . Environmental Toxicology and Chemistry, 2003, 22, 1244-1251.	2.2	42
60	Impact of the presence of solids on peroxidase-catalyzed treatment of aqueous phenol. Journal of Chemical Technology and Biotechnology, 2003, 78, 694-702.	1.6	19
61	BIODEGRADATION OF PLASTICIZERS BY RHODOTORULA RUBRA. Environmental Toxicology and Chemistry, 2003, 22, 1244.	2.2	15
62	Biodegradation of plasticizers by Rhodotorula rubra. Environmental Toxicology and Chemistry, 2003, 22, 1244-51.	2.2	11
63	Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Research, 2002, 36, 4041-4052.	5.3	138
64	Impact of dissolved wastewater constituents on peroxidase-catalyzed treatment of phenol. Journal of Chemical Technology and Biotechnology, 2002, 77, 419-428.	1.6	29
65	Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation, 2002, 13, 343-352.	1.5	77
66	Treatment of a foul condensate from kraft pulping with horseradish peroxidase and hydrogen peroxide. Water Research, 2001, 35, 485-495.	5.3	54
67	Environmental applications of enzymes. Interdisciplinary Environmental Review, 2001, 3, 14.	0.1	27
68	Toxicity of soluble products from the peroxidase-catalysed polymerization of substituted phenolic compounds. Journal of Chemical Technology and Biotechnology, 2000, 75, 98-106.	1.6	29
69	Characterization of tyrosinase for the treatment of aqueous phenols. Bioresource Technology, 2000, 74, 191-199.	4.8	85
70	Treatment of aqueous phenol with soybean peroxidase in the presence of polyethylene glycol. Bioresource Technology, 2000, 73, 139-146.	4.8	100
71	Color and Toxicity Removal following Tyrosinase-Catalyzed Oxidation of Phenols. Biotechnology Progress, 2000, 16, 533-540.	1.3	63
72	Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 2000, 34, 1629-1637.	5.3	68

#	Article	IF	CITATIONS
73	Assessment of soluble products of peroxidase-catalyzed polymerization of aqueous phenol. Enzyme and Microbial Technology, 1999, 25, 185-193.	1.6	65
74	Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 1999, 70, 69-79.	4.8	123
75	Kinetics of peroxidase interactions in the presence of a protective additive. Journal of Chemical Technology and Biotechnology, 1999, 72, 23-32.	1.6	23
76	A simplified model of peroxidase-catalyzed phenol removal from aqueous solution. Journal of Chemical Technology and Biotechnology, 1999, 74, 669-674.	1.6	26
77	Reactor Models for Horseradish Peroxidase–Catalyzed Aromatic Removal. Journal of Environmental Engineering, ASCE, 1998, 124, 794-802.	0.7	27
78	Kinetics of peroxidase interactions in the presence of a protective additive., 1998, 72, 23.		26
79	Potential Applications of Enzymes in Waste Treatment. Journal of Chemical Technology and Biotechnology, 1997, 69, 141-153.	1.6	329
80	A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme and Microbial Technology, 1997, 21, 302-310.	1.6	217
81	Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnology and Bioengineering, 1997, 54, 251-261.	1.7	153
82	Model development for horseradish peroxidase catalyzed removal of aqueous phenol., 1997, 54, 251.		1
83	Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Research, 1996, 30, 954-964.	5.3	181
84	Kinetics of horseradish peroxidase-catalysed polymerization and precipitation of aqueous 4-chlorophenol. Journal of Chemical Technology and Biotechnology, 1994, 60, 203-215.	1.6	94
85	Enzymatic removal of selected aromatic contaminants from wastewater by a fungal peroxidase fromCoprinus macrorhizus in batch reactors. Journal of Chemical Technology and Biotechnology, 1994, 61, 179-182.	1.6	58
86	Reactor development for peroxidase catalyzed polymerization and precipitation of phenols from wastewater. Water Research, 1993, 27, 1629-1639.	5.3	99
87	Enzyme catalyzed polymerization and precipitation of aromatic compounds from aqueous solution. Canadian Journal of Civil Engineering, 1993, 20, 725-735.	0.7	88