
Bingsheng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7237908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (<i>Brachionus koreanus</i>). Environmental Science & Technology, 2016, 50, 8849-8857.	4.6	875
2	Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science & Technology, 2017, 51, 3794-3801.	4.6	393
3	Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicology and Applied Pharmacology, 2008, 230, 23-32.	1.3	307
4	Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquatic Toxicology, 2007, 82, 135-143.	1.9	289
5	The Role of Nrf2 and MAPK Pathways in PFOS-Induced Oxidative Stress in Zebrafish Embryos. Toxicological Sciences, 2010, 115, 391-400.	1.4	253
6	Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic–pituitary–thyroid axis. Aquatic Toxicology, 2013, 126, 207-213.	1.9	244
7	Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquatic Toxicology, 2009, 93, 29-36.	1.9	240
8	Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic–pituitary–thyroid axis of zebrafish larvae. Aquatic Toxicology, 2010, 97, 226-233.	1.9	221
9	Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China. Environmental Health Perspectives, 2013, 121, 839-846.	2.8	211
10	Bioconcentration and Transfer of the Organophorous Flame Retardant 1,3-Dichloro-2-propyl Phosphate Causes Thyroid Endocrine Disruption and Developmental Neurotoxicity in Zebrafish Larvae. Environmental Science & Technology, 2015, 49, 5123-5132.	4.6	194
11	Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquatic Toxicology, 2012, 110-111, 141-148.	1.9	190
12	Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae. Chemosphere, 2009, 77, 1010-1018.	4.2	189
13	Parental Transfer of Polybrominated Diphenyl Ethers (PBDEs) and Thyroid Endocrine Disruption in Zebrafish. Environmental Science & Technology, 2011, 45, 10652-10659.	4.6	183
14	Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: A partial life-cycle test. Chemosphere, 2009, 74, 723-729.	4.2	178
15	Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish. Aquatic Toxicology, 2015, 158, 108-115.	1.9	174
16	Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes. Aquatic Toxicology, 2007, 85, 267-277.	1.9	163
17	Prenatal Transfer of Polybrominated Diphenyl Ethers (PBDEs) Results in Developmental Neurotoxicity in Zebrafish Larvae. Environmental Science & Technology, 2012, 46, 9727-9734.	4.6	147
18	Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish. Aquatic Toxicology, 2015, 160, 163-171.	1.9	138

#	Article	IF	CITATIONS
19	Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology, 2018, 203, 80-87.	1.9	138
20	Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environmental Pollution, 2018, 234, 307-317.	3.7	136
21	Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. Journal of Hazardous Materials, 2015, 283, 897-904.	6.5	131
22	Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae. Aquatic Toxicology, 2013, 128-129, 147-157.	1.9	125
23	Enhanced Bioconcentration of Bisphenol A in the Presence of Nano-TiO ₂ Can Lead to Adverse Reproductive Outcomes in Zebrafish. Environmental Science & Technology, 2016, 50, 1005-1013.	4.6	119
24	Effects of Prochloraz or Propylthiouracil on the Cross-Talk between the HPG, HPA, and HPT Axes in Zebrafish. Environmental Science & amp; Technology, 2011, 45, 769-775.	4.6	113
25	Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol. Aquatic Toxicology, 2012, 106-107, 173-181.	1.9	104
26	Toxicogenomic Responses of Zebrafish Embryos/Larvae to Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) Reveal Possible Molecular Mechanisms of Developmental Toxicity. Environmental Science & Technology, 2013, 47, 10574-10582.	4.6	102
27	Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. Nanotoxicology, 2014, 8, 196-207.	1.6	99
28	Bioconcentration, Biotransformation, and Thyroid Endocrine Disruption of Decabromodiphenyl Ethane (Dbdpe), A Novel Brominated Flame Retardant, in Zebrafish Larvae. Environmental Science & Technology, 2019, 53, 8437-8446.	4.6	98
29	Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicology and Applied Pharmacology, 2010, 243, 87-95.	1.3	97
30	Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. Environmental Pollution, 2018, 240, 17-26.	3.7	96
31	Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquatic Toxicology, 2015, 161, 117-126.	1.9	93
32	Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Science of the Total Environment, 2021, 792, 148352.	3.9	88
33	Cultured gill epithelia as models for the freshwater fish gill. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1566, 72-83.	1.4	87
34	Acute exposure to DEâ€71: Effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae. Environmental Toxicology and Chemistry, 2012, 31, 2338-2344.	2.2	84
35	Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of <i>Daphnia magna</i> at Environmentally Relevant Concentrations. Environmental Science & Technology, 2015, 49, 12975-12983.	4.6	81
36	The adverse effect of TCIPP and TCEP on neurodevelopment of zebrafish embryos/larvae. Chemosphere, 2019, 220, 811-817.	4.2	81

#	Article	IF	CITATIONS
37	Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic–pituitary–gonadal (HPG) axis of zebrafish. Aquatic Toxicology, 2009, 93, 131-137.	1.9	79
38	Dysregulation of Intestinal Health by Environmental Pollutants: Involvement of the Estrogen Receptor and Aryl Hydrocarbon Receptor. Environmental Science & Technology, 2018, 52, 2323-2330.	4.6	78
39	Protein Profiles in Zebrafish (Danio rerio) Embryos Exposed to Perfluorooctane Sulfonate. Toxicological Sciences, 2009, 110, 334-340.	1.4	75

Exposure of spermatozoa to duroquinone may impair reproduction of the common carp (Cyprinus) Tj ETQq0 0 0 rg $\frac{\text{BT}}{1.9}$ /Overlock 10 Tf 50

41	Endocrine disruption and reproductive impairment in zebrafish by exposure to 8:2 fluorotelomer alcohol. Aquatic Toxicology, 2010, 96, 70-76.	1.9	74
42	Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae. Chemosphere, 2018, 197, 353-361.	4.2	69
43	Multigenerational Disruption of the Thyroid Endocrine System in Marine Medaka after a Life-Cycle Exposure to Perfluorobutanesulfonate. Environmental Science & Technology, 2018, 52, 4432-4439.	4.6	69
44	Effect of combined exposure to lead and decabromodiphenyl ether on neurodevelopment of zebrafish larvae. Chemosphere, 2016, 144, 1646-1654.	4.2	66
45	Parental co-exposure to bisphenol A and nano-TiO2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring. Science of the Total Environment, 2019, 650, 557-565.	3.9	64
46	Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. Environmental Science & amp; Technology, 2020, 54, 7494-7503.	4.6	64
47	Perfluorobutanesulfonate Exposure Skews Sex Ratio in Fish and Transgenerationally Impairs Reproduction. Environmental Science & Technology, 2019, 53, 8389-8397.	4.6	61
48	Endocrine disruption and reproduction impairment in zebrafish after longâ€ŧerm exposure to DEâ€71. Environmental Toxicology and Chemistry, 2014, 33, 1354-1362.	2.2	59
49	The progestin levonorgestrel affects sex differentiation in zebrafish at environmentally relevant concentrations. Aquatic Toxicology, 2015, 166, 1-9.	1.9	57
50	Thyroid endocrine system disruption by pentachlorophenol: An in vitro and in vivo assay. Aquatic Toxicology, 2013, 142-143, 138-145.	1.9	56
51	Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead. Environmental Pollution, 2017, 230, 96-106.	3.7	56
52	The binary mixtures of megestrol acetate and 17α-ethynylestradiol adversely affect zebrafish reproduction. Environmental Pollution, 2016, 213, 776-784.	3.7	55
53	Combined effects of polyfluorinated and perfluorinated compounds on primary cultured hepatocytes from rare minnow (Gobiocypris rarus) using toxicogenomic analysis. Aquatic Toxicology, 2009, 95, 27-36.	1.9	53
54	Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments. Environmental Pollution, 2019, 245, 218-225.	3.7	52

#	Article	IF	CITATIONS
55	Chronic Exposure of Marine Medaka (<i>Oryzias melastigma</i>) to 4,5-Dichloro-2- <i>n</i> -octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Technology, 2016, 50, 4492-4501.	4.6	51
56	Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. Aquatic Toxicology, 2018, 201, 1-10.	1.9	49
57	Optical toxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology, 2019, 210, 139-147.	1.9	49
58	Variation in microbial community structure in surface seawater from Pearl River Delta: Discerning the influencing factors. Science of the Total Environment, 2019, 660, 136-144.	3.9	49
59	Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate. Aquatic Toxicology, 2014, 150, 175-181.	1.9	48
60	Bioconcentration, metabolism and alterations of thyroid hormones of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Environmental Toxicology and Pharmacology, 2015, 40, 581-586.	2.0	48
61	Endocrine disruption by diâ€{2â€ethylhexyl)â€phthalate in Chinese rare minnow (<i>Gobiocypris rarus</i>). Environmental Toxicology and Chemistry, 2013, 32, 1846-1854.	2.2	47
62	The synthetic progestin megestrol acetate adversely affects zebrafish reproduction. Aquatic Toxicology, 2014, 150, 66-72.	1.9	47
63	Primary cultured cells as sensitive in vitro model for assessment of toxicants-comparison to hepatocytes and gill epithelia. Aquatic Toxicology, 2006, 80, 109-118.	1.9	46
64	Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways. Food and Chemical Toxicology, 2017, 100, 183-196.	1.8	46
65	EFFECTS OF BROMINATED FLAME RETARDANTS AND BROMINATED DIOXINS ON STEROIDOGENESIS IN H295R HUMAN ADRENOCORTICAL CARCINOMA CELL LINE. Environmental Toxicology and Chemistry, 2007, 26, 764.	2.2	45
66	Acute exposure to DEâ€71 causes alterations in visual behavior in zebrafish larvae. Environmental Toxicology and Chemistry, 2013, 32, 1370-1375.	2.2	45
67	DE-71-Induced Apoptosis Involving Intracellular Calcium and the Bax-Mitochondria-Caspase Protease Pathway in Human Neuroblastoma Cells In Vitro. Toxicological Sciences, 2008, 104, 341-351.	1.4	44
68	The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209). Environmental Pollution, 2018, 237, 784-791.	3.7	43
69	Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate Affects Lipid Metabolism in Zebrafish Larvae via DNA Methylation Modification. Environmental Science & Technology, 2020, 54, 355-363.	4.6	43
70	Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae. Ecotoxicology and Environmental Safety, 2019, 179, 119-126.	2.9	42
71	Early-life exposure to the organophosphorus flame-retardant tris (1,3-dichloro-2-propyl) phosphate induces delayed neurotoxicity associated with DNA methylation in adult zebrafish. Environment International, 2020, 134, 105293.	4.8	42
72	The developmental neurotoxicity of polybrominated diphenyl ethers: Effect of DEâ€71 on dopamine in zebrafish larvae. Environmental Toxicology and Chemistry, 2015, 34, 1119-1126.	2.2	41

#	Article	IF	CITATIONS
73	A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae. Aquatic Toxicology, 2018, 199, 46-54.	1.9	41
74	Impact of co-exposure with lead and decabromodiphenyl ether (BDE-209) on thyroid function in zebrafish larvae. Aquatic Toxicology, 2014, 157, 186-195.	1.9	40
75	Disturbances in Microbial and Metabolic Communication across the Gut–Liver Axis Induced by a Dioxin-like Pollutant: An Integrated Metagenomics and Metabolomics Analysis. Environmental Science & Technology, 2021, 55, 529-537.	4.6	40
76	Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade. Toxicology and Applied Pharmacology, 2010, 247, 222-228.	1.3	38
77	Characteristics of legacy and novel brominated flame retardants in water and sediment surrounding two e-waste dismantling regions in Taizhou, eastern China. Science of the Total Environment, 2021, 794, 148744.	3.9	37
78	Waterborne exposure to low concentrations of BDE-47 impedes early vascular development in zebrafish embryos/larvae. Aquatic Toxicology, 2018, 203, 19-27.	1.9	36
79	Identification and quantification of titanium nanoparticles in surface water: A case study in Lake Taihu, China. Journal of Hazardous Materials, 2020, 382, 121045.	6.5	36
80	An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology, 2005, 202, 25-37.	1.3	35
81	Tris (1,3-dichloro-2-propyl) phosphate-induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells. NeuroToxicology, 2017, 58, 1-10.	1.4	35
82	Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP. Toxicology, 2011, 282, 146-153.	2.0	33
83	High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae. Environmental Pollution, 2016, 214, 324-333.	3.7	33
84	Effects of xenoestrogens on the expression of vitellogenin (<i>vtg</i>) and cytochrome P450 aromatase (<i>cyp19a</i> and <i>b</i>) genes in zebrafish (<i>Danio rerio</i>) larvae. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 960-967.	0.9	31
85	Alterations in retinoid status after long-term exposure to PBDEs in zebrafish (Danio rerio). Aquatic Toxicology, 2012, 120-121, 11-18.	1.9	31
86	BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus. Aquatic Toxicology, 2016, 177, 285-294.	1.9	31
87	Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida). Chemosphere, 2018, 192, 43-50.	4.2	31
88	Impact of co-exposure to titanium dioxide nanoparticles and Pb on zebrafish embryos. Chemosphere, 2019, 233, 579-589.	4.2	30
89	Photodegradation of novel brominated flame retardants (NBFRs) in a liquid system: Kinetics and photoproducts. Chemical Engineering Journal, 2019, 362, 938-946.	6.6	30
90	Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae. Environmental Toxicology and Pharmacology, 2013, 35, 13-20.	2.0	29

#	Article	IF	CITATIONS
91	Identification of Molecular Targets for 4,5-Dichloro-2- <i>n</i> -octyl-4-isothiazolin-3-one (DCOIT) in Teleosts: New Insight into Mechanism of Toxicity. Environmental Science & Technology, 2017, 51, 1840-1847.	4.6	29
92	Bioconcentration and developmental neurotoxicity of novel brominated flame retardants, hexabromobenzene and pentabromobenzene in zebrafish. Environmental Pollution, 2021, 268, 115895.	3.7	29
93	Nano-TiO2 enhanced bioaccumulation and developmental neurotoxicity of bisphenol a in zebrafish larvae. Environmental Research, 2020, 187, 109682.	3.7	29
94	Adverse Effects, Expression of the <i>Bk-CYP3045C1</i> Gene, and Activation of the ERK Signaling Pathway in the Water Accommodated Fraction-Exposed Rotifer. Environmental Science & Technology, 2016, 50, 6025-6035.	4.6	28
95	A settlement inhibition assay with cyprid larvae of the barnacle Balanus amphitrite. Chemosphere, 1997, 35, 1867-1874.	4.2	27
96	Potential exposure of perfluorinated compounds to Chinese in Shenyang and Yangtze River Delta areas. Environmental Chemistry, 2011, 8, 407.	0.7	27
97	Chronic exposure to environmental levels of cis-bifenthrin: Enantioselectivity and reproductive effects on zebrafish (Danio rerio). Environmental Pollution, 2019, 251, 175-184.	3.7	27
98	Nonalcoholic Fatty Liver Disease Development in Zebrafish upon Exposure to Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate, a Novel Brominated Flame Retardant. Environmental Science & Technology, 2021, 55, 6926-6935.	4.6	27
99	Decabromodiphenyl Ethane Mainly Affected the Muscle Contraction and Reproductive Endocrine System in Female Adult Zebrafish. Environmental Science & Technology, 2022, 56, 470-479.	4.6	27
100	Activation of aryl hydrocarbon receptor by dioxin directly shifts gut microbiota in zebrafish. Environmental Pollution, 2019, 255, 113357.	3.7	25
101	Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor. Toxicological Sciences, 2017, 160, 205-216.	1.4	24
102	Exposure to cadmium causes inhibition of otolith development and behavioral impairment in zebrafish larvae. Aquatic Toxicology, 2019, 214, 105236.	1.9	24
103	TiO2 nanoparticles and BPA are combined to impair the development of offspring zebrafish after parental coexposure. Chemosphere, 2019, 217, 732-741.	4.2	24
104	In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants. Journal of Hazardous Materials, 2021, 409, 124999.	6.5	24
105	Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. Environmental Pollution, 2016, 218, 50-58.	3.7	22
106	Parental Exposure to Perfluorobutanesulfonate Impairs Offspring Development through Inheritance of Paternal Methylome. Environmental Science & amp; Technology, 2019, 53, 12018-12025.	4.6	22
107	The neurotoxicity of DEâ€71: effects on neural development and impairment of serotonergic signaling in zebrafish larvae. Journal of Applied Toxicology, 2016, 36, 1605-1613.	1.4	21
108	Bioconcentration of 2,4,6-tribromophenol (TBP) and thyroid endocrine disruption in zebrafish larvae. Ecotoxicology and Environmental Safety, 2020, 206, 111207.	2.9	21

#	ARTICLE	IF	CITATIONS
109	The genome of the marine rotifer Brachionus koreanus sheds light on the antioxidative defense system in response to 2-ethyl-phenanthrene and piperonyl butoxide. Aquatic Toxicology, 2020, 221, 105443.	1.9	21
110	Early-life exposure to tris (1,3-dichloro-2-propyl) phosphate caused multigenerational neurodevelopmental toxicity in zebrafish via altering maternal thyroid hormones transfer and epigenetic modifications. Environmental Pollution, 2021, 285, 117471.	3.7	21
111	Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos. Aquatic Toxicology, 2012, 118-119, 108-115.	1.9	20
112	Adverse outcome pathway: Framework, application, and challenges in chemical risk assessment. Journal of Environmental Sciences, 2015, 35, 191-193.	3.2	20
113	Titanium dioxide nanoparticles enhanced thyroid endocrine disruption of pentachlorophenol rather than neurobehavioral defects in zebrafish larvae. Chemosphere, 2020, 249, 126536.	4.2	20
114	Effects of SiO2 nanoparticles on the uptake of tetrabromobisphenol A and its impact on the thyroid endocrine system in zebrafish larvae. Ecotoxicology and Environmental Safety, 2021, 209, 111845.	2.9	20
115	Bioaccumulation, elimination and metabolism in earthworms and microbial indices responses after exposure to decabromodiphenyl ethane in a soil-earthworm-microbe system. Environmental Pollution, 2021, 289, 117965.	3.7	20
116	The impact of long term exposure to phthalic acid esters on reproduction in Chinese rare minnow (Gobiocypris rarus). Environmental Pollution, 2015, 203, 130-136.	3.7	19
117	Endocrine Disruption throughout the Hypothalamus–Pituitary–Gonadal–Liver (HPGL) Axis in Marine Medaka (<i>Oryzias melastigma</i>) Chronically Exposed to the Antifouling and Chemopreventive Agent, 3,3′-Diindolylmethane (DIM). Chemical Research in Toxicology, 2016, 29, 1020-1028.	1.7	19
118	Exploring the environmental fate of novel brominated flame retardants in a sediment-water-mudsnail system: Enrichment, removal, metabolism and structural damage. Environmental Pollution, 2020, 265, 114924.	3.7	19
119	Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. Environmental Pollution, 2021, 270, 116277.	3.7	19
120	Brominated flame retardants (BFRs) in sediment from a typical e-waste dismantling region in Southern China: Occurrence, spatial distribution, composition profiles, and ecological risks. Science of the Total Environment, 2022, 824, 153813.	3.9	18
121	Endocrine disruption in Chinese rare minnow (Gobiocypris rarus) after long-term exposure to low environmental concentrations of progestin megestrol acetate. Ecotoxicology and Environmental Safety, 2018, 163, 289-297.	2.9	15
122	New evidence for neurobehavioral toxicity of deltamethrin at environmentally relevant levels in zebrafish. Science of the Total Environment, 2022, 822, 153623.	3.9	14
123	Coexposure to environmental concentrations of cis-bifenthrin and graphene oxide: Adverse effects on the nervous system during metamorphic development of Xenopus laevis. Journal of Hazardous Materials, 2020, 381, 120995.	6.5	13
124	Linking genomic responses of gonads with reproductive impairment in marine medaka (Oryzias) Tj ETQq0 0 0 rgl (DIM). Aquatic Toxicology, 2017, 183, 135-143.	BT /Overlo 1.9	ock 10 Tf 50 1 12
125	Genome-wide identification of ATP-binding cassette (ABC) transporters and conservation of their xenobiotic transporter function in the monogonont rotifer (Brachionus koreanus). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 21, 17-26.	0.4	12
126	Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and	4.2	12

offspring embryonic development in zebrafish. Chemosphere, 2020, 256, 127169.

#	Article	IF	CITATIONS
127	Cytotoxicity profiling of decabromodiphenyl ethane to earthworm (Eisenia fetida): Abnormity-recovery-dysregulation physiological pattern reflects the coping mechanism. Science of the Total Environment, 2022, 813, 152607.	3.9	12
128	The involvement of autophagy and cytoskeletal regulation in TDCIPP-induced SH-SY5Y cell differentiation. NeuroToxicology, 2017, 62, 14-23.	1.4	11
129	Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment. Environmental Pollution, 2022, 296, 118742.	3.7	11
130	Neurotoxicity of tetrabromobisphenol A and SiO2 nanoparticle co-exposure in zebrafish and barrier function of the embryonic chorion. Science of the Total Environment, 2022, 845, 157364.	3.9	11
131	Response of developing cultured freshwater gill epithelia to gradual apical media dilution and hormone supplementation. The Journal of Experimental Zoology, 2004, 301A, 867-881.	1.4	10
132	Genome-wide identification of 99 autophagy-related (Atg) genes in the monogonont rotifer Brachionus spp. and transcriptional modulation in response to cadmium. Aquatic Toxicology, 2018, 201, 73-82.	1.9	10
133	Bioconcentration, depuration and toxicity of Pb in the presence of titanium dioxide nanoparticles in zebrafish larvae. Aquatic Toxicology, 2019, 214, 105257.	1.9	10
134	Unexpected Observations: Probiotic Administration Greatly Aggravates the Reproductive Toxicity of Perfluorobutanesulfonate in Zebrafish. Chemical Research in Toxicology, 2020, 33, 1605-1608.	1.7	10
135	Bis(2-ethylhexyl)-tetrabromophthalate induces zebrafish obesity by altering the brain-gut axis and intestinal microbial composition. Environmental Pollution, 2021, 290, 118127.	3.7	10
136	Fate and toxicity of legacy and novel brominated flame retardants in a sediment-water-clam system: Bioaccumulation, elimination, biotransformation and structural damage. Science of the Total Environment, 2022, 840, 156634.	3.9	10
137	Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos. Environmental Pollution, 2020, 266, 115284.	3.7	9
138	Mechanistic study of chlordecone-induced endocrine disruption: Based on an adverse outcome pathway network. Chemosphere, 2016, 161, 372-381.	4.2	8
139	Effects of nano-TiO2 on the bioavailability and toxicity of bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) in developing zebrafish. Chemosphere, 2022, 295, 133862.	4.2	8
140	Cultured gill epithelial cells from tilapia (Oreochromis niloticus): a new in vitro assay for toxicants. Aquatic Toxicology, 2005, 71, 61-72.	1.9	7
141	Embryonic exposure to pentabromobenzene inhibited the inflation of posterior swim bladder in zebrafish larvae. Environmental Pollution, 2020, 259, 113923.	3.7	7
142	Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate showed poor penetrability but increased the permeability of blood brain barrier: Evidences from in vitro and in vivo studies. Journal of Hazardous Materials, 2022, 424, 127386.	6.5	6
143	Evaluation and mechanistic study of chlordecone-induced thyroid disruption: Based on in vivo, in vitro and in silico assays. Science of the Total Environment, 2020, 716, 136987.	3.9	3
144	Nano-TiO2 Adsorbed Decabromodiphenyl Ethane and Changed Its Bioavailability, Biotransformation and Biotoxicity in Zebrafish Embryos/Larvae. Frontiers in Environmental Science, 2022, 10, .	1.5	3

#	Article	IF	CITATIONS
145	Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae. Chemosphere, 2017, 186, 209-217.	4.2	2
146	Endocrine disrupting effects induced by levonorgestrel linked to altered DNA methylation in rare minnow (Gobiocypris rarus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 257, 109332.	1.3	0