Songjian Ao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7237659/publications.pdf

Version: 2024-02-01

		182225	156644
95	3,694	30	58
papers	citations	h-index	g-index
97	97	97	1638
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Amphibolites from makran accretionary complex record Permian-Triassic Neo-Tethyan evolution. International Geology Review, 2022, 64, 1594-1610.	1.1	5
2	Middle–Late Triassic southward-younging granitoids: Tectonic transition from subduction to collision in the Eastern Tianshan–Beishan Orogen, NW China. Bulletin of the Geological Society of America, 2022, 134, 2206-2224.	1.6	9
3	Late Paleozoic Southward Migration of the Dananhu Arc in the Eastern Tianshan (NW China). Earth and Space Science, 2022, 9, .	1.1	11
4	Strong lateral heterogeneities of upper mantle shear-wave structures beneath the central and eastern Tien Shan. International Journal of Earth Sciences, 2022, 111, 2555-2569.	0.9	3
5	From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals (Basel, Switzerland), 2022, 12, 166.	0.8	1
6	Opposite facing dipping structure in the uppermost mantle beneath the central Tien Shan from Pn traveltime tomography. International Journal of Earth Sciences, 2022, 111, 2571-2584.	0.9	2
7	Geochemistry and Petrogenesis of Shoshonitic Dyke Swarm in the Northeast of Meshkinshahr, NW Iran. Minerals (Basel, Switzerland), 2022, 12, 309.	0.8	O
8	Understanding the Deformation Structures and Tectonics of the Active Orogenic Fold-Thrust Belt: Insights from the Outer Indo-Burman Ranges. Lithosphere, 2022, 2022, .	0.6	7
9	Tectonic Juxtaposition of Two Independent Paleoproterozoic Arcs by Cenozoic Duplexing in the Arun Tectonic Window of the Eastern Nepalese Himalaya. Frontiers in Earth Science, 2022, 10, .	0.8	O
10	Prolonged Late Mesoproterozoic to Late Triassic Tectonic Evolution of the Major Paleo-Asian Ocean in the Beishan Orogen (NW China) in the Southern Altaids. Frontiers in Earth Science, 2022, 9, .	0.8	7
11	Tectonics and Sedimentology of Accretionary and Collisional Orogens. Journal of Asian Earth Sciences, 2022, , 105270.	1.0	1
12	U–Pb age, Hf–O isotopes, and geochemistry of the Sardasht ophiolite in the NW Zagros orogen: Implications for the tectonic evolution of Neoâ€Tethys. Geological Journal, 2021, 56, 1315-1329.	0.6	2
13	Tectonic setting and provenance of Early Cretaceous strata in the footwall of Main Central Thrust, Eastern Nepal: Implications for the archipelago palaeogeography of the ⟨scp⟩Neoâ€Tethys⟨/scp⟩. Geological Journal, 2021, 56, 1958-1973.	0.6	4
14	Geochemistry of Eocene to Pliocene strata of the Bengal Basin: Implications for provenance and erosion of the Himalaya. Geological Journal, 2021, 56, 1756-1772.	0.6	2
15	Early Permian subduction-related transtension in the Turpan Basin, East Tianshan (NW China): implications for accretionary tectonics of the southern Altaids. Geological Magazine, 2021, 158, 175-198.	0.9	15
16	From Ordovician nascent to early Permian mature arc in the southern Altaids: Insights from the Kalatage inlier in the Eastern Tianshan, NW China., 2021, 17, 647-683.		18
17	The youngest matrix of 234ÂMa of the Kanguer accretionary mélange containing blocks of N-MORB basalts: constraints on the northward subduction of the Paleo-Asian Kanguer Ocean in the Eastern Tianshan of the Southern Altaids. International Journal of Earth Sciences, 2021, 110, 791-808.	0.9	34
18	Middle Triassic lower crustâ€derived adakitic magmatism: Thickening of the Dananhu intraâ€oceanic arc and its implications for arc–arc amalgamation in the Eastern Tianshan (NW China). Geological Journal, 2021, 56, 3137-3154.	0.6	25

#	Article	IF	CITATIONS
19	Two key switches in regional stress field during multi-stage deformation in the Carboniferous–Triassic southernmost Altaids (Beishan, NW China): Response to orocline-related roll-back processes. Bulletin of the Geological Society of America, 2021, 133, 2591-2611.	1.6	6
20	Three stages of arc migration in the Carboniferous-Triassic in northern Qiangtang, central Tibet, China: Ridge subduction and asynchronous slab rollback of the Jinsha Paleotethys. Bulletin of the Geological Society of America, 2021, 133, 2485-2500.	1.6	8
21	Silurian to early Permian slab melting and crustal growth in the southern Altaids: insights from adakites and associated mineral deposits in the Dananhu arc, Eastern Tianshan, NW China. International Journal of Earth Sciences, 2021, 110, 2115-2131.	0.9	12
22	Petrogenesis of Late Carboniferous-Early Permian mafic-ultramafic-felsic complexes in the eastern Central Tianshan, NW China: The result of subduction-related transtension?. Gondwana Research, 2021, 95, 72-87.	3.0	11
23	Closure of the Paleoâ€Asian Ocean in the Middleâ€Late Triassic (Ladinian arnian): Evidence From Provenance Analysis of Retroarc Sediments. Geophysical Research Letters, 2021, 48, e2021GL094276.	1.5	29
24	Long-lived low Th/U Pacific-type isotopic mantle domain: Constraints from Nd and Pb isotopes of the Paleo-Asian Ocean mantle. Earth and Planetary Science Letters, 2021, 567, 117006.	1.8	12
25	Cu-Ni mineralization in Early Permian mafic complexes in the Kalatage area of eastern Tianshan (NW) Tj ETQq1 1 (Geology Reviews, 2021, 136, 104258.	0.784314 1.1	rgBT /Overlo
26	Paleo-Tethys subduction induced slab-drag opening the Neo-Tethys: Evidence from an Iranian segment of Gondwana. Earth-Science Reviews, 2021, 221, 103788.	4.0	31
27	Petrogenesis and U-Pb zircon geochronology of migmatitzation during Neo-Tethyan Jurassic magmatic arc extension: The Boroujerd example, western Iran. Lithos, 2021, 398-399, 106278.	0.6	0
28	Metallogenic regularity and metallogenic series of West Kunlun and its adjacent areas. Acta Petrologica Sinica, 2021, 37, 3615-3644.	0.3	0
29	Ordovician to Early Permian accretionary tectonics of Eastern Tianshan: Insights from Kawabulak ophiolitic mélange, granitoid, and granitic gneiss. Geological Journal, 2020, 55, 280-298.	0.6	7
30	Geochemistry and detrital zircon U–Pb dating of Pliocene-Pleistocene sandstones of the Chittagong Tripura Fold Belt (Bangladesh): Implications for provenance. Gondwana Research, 2020, 78, 278-290.	3.0	22
31	Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction. International Geology Review, 2020, 62, 1677-1697.	1.1	8
32	Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Science China Earth Sciences, 2020, 63, 329-361.	2.3	97
33	Late Silurian to early Devonian development of the Chingiz accretion arc, West Junggar: insights into accretion arc evolution in the Central Asia Orogenic Belt. International Geology Review, 2020, , 1-21.	1.1	8
34	Late Cenozoic volcanism in the Almaludag region, Azerbaijan province, northwest Iran: Evidence for post-collisional extension. Journal of Geodynamics, 2020, 141-142, 101779.	0.7	2
35	Age and tectonic setting of the Jingangku Besshi-type volcanogenic massive sulfide deposit from the Northern Shanxi, North China Craton. Precambrian Research, 2020, 350, 105873.	1.2	2
36	Re-Os and U-Pb geochronology for the Xiaorequanzi VMS deposit in the Eastern Tianshan, NW China: Constraints on the timing of mineralization and stratigraphy. Ore Geology Reviews, 2020, 122, 103473.	1.1	21

#	Article	IF	CITATIONS
37	Late Paleozoic Chingiz and Saur Arc Amalgamation in West Junggar (NW China): Implications for Accretionary Tectonics in the Southern Altaids. Tectonics, 2020, 39, e2019TC005781.	1.3	17
38	Geodynamic model and tectono-structural framework of the Bengal Basin and its surroundings. Journal of Maps, 2020, 16, 445-458.	1.0	27
39	Late Paleozoic metallogenesis and evolution of the Chinese Western Tianshan Collage, NW China, Central Asia orogenic belt. Ore Geology Reviews, 2020, 124, 103643.	1.1	12
40	A new Carboniferous–Permian intraâ€oceanic subduction system in the North Tianshan (NW China): Implications for multiple accretionary tectonics of the southern Altaids. Geological Journal, 2020, 55, 2232-2253.	0.6	14
41	Reconstructing the Source and Growth of the Makran Accretionary Complex: Constraints From Detrital Zircon Uâ€Pb Geochronology. Tectonics, 2020, 39, e2019TC005963.	1.3	15
42	Indo-Burma passive amalgamation along the Kaladan Fault: Insights from zircon provenance in the Chittagong-Tripura Fold Belt (Bangladesh). Bulletin of the Geological Society of America, 2020, 132, 1953-1968.	1.6	21
43	Accretion, subduction erosion, and tectonic extrusion during late Paleozoic to Mesozoic orogenesis in NE China. Journal of Asian Earth Sciences, 2020, 194, 104258.	1.0	11
44	Provenance of the <scp>C</scp> enozoic <scp>B</scp> engal <scp>B</scp> asin sediments: <scp>I</scp> nsights from <scp>U–P</scp> b ages and <scp>Hf</scp> isotopes of detrital zircons. Geological Journal, 2019, 54, 978-990.	0.6	12
45	Deep Structure and Metallogenic Processes of the Altaiâ€Junggarâ€Tianshan Collage in Southern Altaids. Acta Geologica Sinica, 2019, 93, 1163-1168.	0.8	5
46	Rifting of the northern margin of the Indian craton in the Early Cretaceous: Insight from the Aulis Trachyte of the Lesser Himalaya (Nepal). Lithosphere, 2019, 11, 643-651.	0.6	5
47	Structures, strain analyses, and ⁴⁰ Ar/ ³⁹ Ar ages of blueschistâ€bearing Heilongjiang Complex (NE China): Implications for the Mesozoic tectonic evolution of NE China. Geological Journal, 2019, 54, 716-745.	0.6	18
48	Origin, age and petrogenesis of barren (low-grade) granitoids from the Bezenjan-Bardsir magmatic complex, southeast of the Urumieh-Dokhtar magmatic belt, Iran. Ore Geology Reviews, 2019, 104, 132-147.	1.1	22
49	Detrital geochronology of the Gondwana sequence of the Lesser Himalaya of the Nepal Himalaya. Geological Journal, 2019, 54, 3909-3920.	0.6	6
50	Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and Sr-Nd-Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: Implications for Ediacaran active continental margin along the northern Gondwana and constraints on the late Oligocene crustal anatexis. Gondwana Research, 2018, 57, 48-76.	3.0	34
51	Components and structures of the eastern Tethyan Himalayan Sequence in SW China: Not a passive margin shelf but a mélange accretionary prism. Geological Journal, 2018, 53, 2665-2689.	0.6	22
52	Geochemistry, zircon U-Pb and Hf isotope for granitoids, NW Sanandaj-Sirjan zone, Iran: Implications for Mesozoic-Cenozoic episodic magmatism during Neo-Tethyan lithospheric subduction. Gondwana Research, 2018, 62, 227-245.	3.0	66
53	Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China. Ore Geology Reviews, 2018, 95, 1106-1122.	1.1	16
54	Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes. Journal of Asian Earth Sciences, 2018, 153, 9-41.	1.0	36

#	Article	IF	CITATIONS
55	Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex. International Journal of Earth Sciences, 2018, 107, 1127-1151.	0.9	28
56	Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, 2018, 186, 94-128.	4.0	358
57	Geology, Re-Os and U-Pb geochronology and sulfur isotope of the the Donggebi porphyry Mo deposit, Xinjiang, NW China, Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2018, 165, 270-284.	1.0	9
58	The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids. Gondwana Research, 2017, 43, 17-40.	3.0	41
59	Detrital zircon provenance analysis in the Zagros Orogen, SW Iran: implications for the amalgamation history of the Neo-Tethys. International Journal of Earth Sciences, 2017, 106, 1223-1238.	0.9	55
60	Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision. Science China Earth Sciences, 2017, 60, 1015-1039.	2.3	62
61	Provenance of the Neogene Surma Group from the Chittagong Tripura Fold Belt, southeast Bengal Basin, Bangladesh: Constraints from whole-rock geochemistry and detrital zircon U-Pb ages. Journal of Asian Earth Sciences, 2017, 148, 277-293.	1.0	19
62	Neoarchean Algoma-type banded iron formation from the Northern Shanxi, the Trans-North China Orogen: SIMS U-Pb age, origin and tectonic setting. Precambrian Research, 2017, 303, 548-572.	1.2	15
63	ZIRCON U-PB AND HF ISOTOPIC STUDY OF THE KAWABULAKE OPHIOLITE EASTERN TIANSHAN: IMPLICATION FOR THE TECTONIC EVOLUTION OF CAOB. Geodinamika I Tektonofizika, 2017, 8, 409.	0.3	0
64	U–Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): From continental rifting at 79Ma to oceanic core complex at ca. 36Ma in the southern Neo-Tethys. Gondwana Research, 2016, 31, 305-318.	3.0	63
65	Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U–Pb and 40 Ar/ 39 Ar geochronology. Gondwana Research, 2016, 30, 224-235.	3.0	58
66	Triassic deformation of Permian Early Triassic arc-related sediments in the Beishan (NW China): Last pulse of the accretionary orogenesis in the southernmost Altaids. Tectonophysics, 2015, 662, 363-384.	0.9	38
67	Late Paleozoic metallogenesis and evolution of the East Tianshan Orogenic Belt (NW China, Central) Tj ETQq $1\ 1$	0.784314 0.2	l rgBT /Over
68	<scp>R</scp> eâ€" <scp>O</scp> s Age of Molybdenite from the <scp>D</scp> aheishan <scp>M</scp> o Deposit in the Eastern <scp>C</scp> entral <scp>A</scp> sian <scp>O</scp> rogenic <scp>B</scp> elt, <scp>NE C</scp> hina. Resource Geology, 2014, 64, 379-386.	0.3	5
69	Mid-Late Paleozoic metallogenesis and evolution of the Chinese Altai and East Junggar Orogenic Belt, NW China, Central Asia. Journal of Geosciences (Czech Republic), 2014, , 255-274.	0.3	21
70	Structure, age, and tectonic development of the Huoshishan–Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Research, 2014, 25, 820-841.	3.0	105
71	Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids. Numerische Mathematik, 2014, 314, 679-703.	0.7	43
72	<pre><scp><scp>Re</scp></scp>â€"<scp><scp>Os</scp></scp> Isotopic Age of the <scp>H</scp>ongqiling <scp><scp>Cu</scp></scp>â€"<scp>Ni</scp> Sulfide Deposit in <scp>J</scp>ilin Province, <scp>NE C</scp>hina and its Geological Significance. Resource Geology, 2014, 64, 247-261.</pre>	0.3	14

#	Article	IF	CITATIONS
73	Petrology and geochronology of Paleoproterozoic garnet-bearing amphibolites from the Dunhuang Block, Eastern Tarim Craton. Precambrian Research, 2014, 255, 163-180.	1.2	43
74	Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in eastern Liaoning Province: Constraints from geochemistry and SHRIMP zircon U–Pb dating. Precambrian Research, 2014, 254, 306-322.	1.2	45
75	Neoarchean Algoma-type banded iron formations from Eastern Hebei, North China Craton: SHRIMP U-Pb age, origin and tectonic setting. Precambrian Research, 2014, 251, 212-231.	1.2	44
76	How many sutures in the southern Central Asian Orogenic Belt: Insights from East Xinjiang–West Gansu (NW China)?. Geoscience Frontiers, 2014, 5, 525-536.	4.3	146
77	Geochronology, geochemistry and petrogenesis of Early Permian alkaline magmatism in the Eastern Tianshan: Implications for tectonics of the Southern Altaids. Lithos, 2014, 190-191, 37-51.	0.6	98
78	Tectonic implications of Re-Os dating of molybdenum deposits in the Tianshan–Xingmeng Orogenic Belt, Central Asia. International Geology Review, 2014, 56, 985-1006.	1.1	8
79	Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids. Journal of Asian Earth Sciences, 2013, 78, 114-142.	1.0	100
80	The metasedimentary rocks from the eastern margin of the Tarim Craton: Petrology, geochemistry, zircon U–Pb dating, Hf isotopes and tectonic implications. Lithos, 2013, 179, 120-136.	0.6	55
81	SIMS U-Pb zircon dating and Re-Os isotopic analysis of the Hulu Cu-Ni deposit, eastern Tianshan, Central Asian Orogenic Belt, and its geological significance. Journal of Geosciences (Czech Republic), 2013, , 251-270.	0.3	28
82	Age and tectonic setting of magmatic sulfide Cu-Ni mineralization in the Eastern Tianshan Orogenic Belt, Xinjiang, Central Asia. Journal of Geosciences (Czech Republic), 2013, , 233-250.	0.3	13
83	Palaeozoic porphyry Cu–Au and ultramafic Cu–Ni deposits in the eastern Tianshan orogenic belt: temporal constraints from U–Pb geochronology. International Geology Review, 2013, 55, 842-862.	1.1	11
84	The Liuyuan complex in the Beishan, NW China: a Carboniferous–Permian ophiolitic fore-arc sliver in the southern Altaids. Geological Magazine, 2012, 149, 483-506.	0.9	122
85	Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids. Geological Magazine, 2012, 149, 606-625.	0.9	106
86	Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids. Journal of Asian Earth Sciences, 2012, 49, 54-68.	1.0	83
87	Ordovician eclogites from the Chinese Beishan: implications for the tectonic evolution of the southern Altaids. Journal of Metamorphic Geology, 2011, 29, 803-820.	1.6	82
88	A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos, 2011, 125, 592-606.	0.6	140
89	Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. Gondwana Research, 2011, 19, 958-974.	3.0	141
90	Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Numerische Mathematik, 2011, 311, 483-483.	0.7	3

#	Article	IF	CITATIONS
91	Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Numerische Mathematik, 2010, 310, 1553-1594.	0.7	338
92	In-situ U–Pb, Hf and Re–Os isotopic analyses of the Xiangshan Ni–Cu–Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization. Lithos, 2010, 120, 547-562.	0.6	156
93	Geochronology and geochemistry of Early Permian mafic–ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research, 2010, 18, 466-478.	3.0	159
94	REE mineralization related to carbonatites and alkaline magmatism in the northern Tarim basin, NW China: implications for a possible Permian large igneous province. International Journal of Earth Sciences, $0, 1$.	0.9	0
95	Rheniumâ€Osmium Isotope Constraints on the Origin of the Tianyu Cuâ€Ni Deposit in the East Tianshan Orogenic Belt, Xinjiang, NW China. Acta Geologica Sinica, 0, , .	0.8	0