
JaeHwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7237617/publications.pdf Version: 2024-02-01

 Changes in physicochemical properties and bacterial communities in aged K during cold storage. Food Science and Nutrition, 2022, 10, 2590-2600. Effects of different polarity of onion skin extracts on antioxidative properties profiles. International Journal of Food Science and Technology, 2022, 57, 45 Physicochemical properties and volatile formation mechanism of mediumâ during heating. Journal of Food Science, 2022, , . Physicochemical properties and oxidative stability of corn oil in infrared-base air-circulating cookers. Food Science and Biotechnology, 2022, 31, 1433-14 	1.3 s and nonâ€volatile 28-4536. ℓhain triacylglycerols ℓchain triacylglycerols 1.5 ℓcd and hot 42. pulk oil. International 1.3	3 1 0 3 4
 profiles. International Journal of Food Science and Technology, 2022, 57, 45 Physicochemical properties and volatile formation mechanism of medium†during heating. Journal of Food Science, 2022, , . Physicochemical properties and oxidative stability of corn oil in infrared-base 	28-4536. 1.3 εhain triacylglycerols 1.5 ed and hot 1.2 bulk oil. International 1.3 oxidative stability in 1.3	0 3
 during heating. Journal of Food Science, 2022, , . Physicochemical properties and oxidative stability of corn oil in infrared-base 	ed and hot 42. 1.2 pulk oil. International 1.3	3
	42. 1.2 pulk oil. International 1.3	
	oxidative stability in	4
5 Evaluation of the effects of amphiphilic compounds on oxygen solubility in b Journal of Food Science and Technology, 2022, 57, 6082-6089.	oxidative stability in 4.2	
6 Evaluation of the effects of aldehydes on association colloid properties and bulk oils. Food Chemistry, 2021, 338, 127778.		12
 ⁷ Effects of Moisture and Amphiphilic Compounds on the Oxidative Stability of Oil. European Journal of Lipid Science and Technology, 2021, 123, 2000326 	of Microwaveâ€Treated Corn . 1.0	2
8 Changes in the levels of headspace volatiles, including acetaldehyde and for white wine following light irradiation. Journal of Food Science, 2021, 86, 834	maldehyde, in red and 1.5	3
9 Evaluation of solvent effects on the DPPH reactivity for determining the anti matrix. Food Science and Biotechnology, 2021, 30, 367-375.	oxidant activity in oil 1.2	16
10 Enhancing oxidative stability of frying oils by lowâ€frequency radio wave tre Journal of Food Science and Technology, 2021, 56, 3960-3969.	atment. International 1.3	2
Chemical profiles of heated perilla meal extracts and their antioxidant activit Journal of Food Science and Technology, 2021, 56, 5130-5138.	ies. International 1.3	2
12 Changes in acetaldehyde and formaldehyde contents in foods depending on methods. Journal of Hazardous Materials, 2021, 414, 125475.	the typical home cooking 6.5	24
13 Dioleylphosphatidylcholine increases the antioxidant properties of ascorbyl compared to other hydrophilic and lipophilic antioxidants. Food Chemistry, 2		10
Chemical changes and antioxidant activities of heated whole barley extracts Biotechnology, 2021, 30, 1269-1276.	. Food Science and 1.2	3
Distribution of aldehydes compared to other oxidation parameters in oil mat autoxidation. Food Science and Biotechnology, 2021, 30, 1195-1203.	rices during 1.2	10
16 Development of methods for determining free fatty acid contents in red colo and Biotechnology, 2021, 30, 1435-1443.	ored oils. Food Science 1.2	2
Microwave resonator can help to predict oxidative stability in C18-based veg Chemistry, 2021, 373, 131606.	getable oils. Food 4.2	0
18 Enhancing oxidative stability of tocopherolâ€enriched edible oils using short microwave irradiation. Journal of Food Science, 2021, , .	:â€ŧerm exposure to 1.5	0

#	Article	IF	CITATIONS
19	Effects of 1,2-dioleoyl-sn-glycero-3-phosphocholine on moisture content and oxidative stability in soybean oil–water system at different interfaces. Food Science and Biotechnology, 2020, 29, 479-486.	1.2	7
20	Effects of plasma treatment on the oxidative stability of vegetable oil containing antioxidants. Food Chemistry, 2020, 302, 125306.	4.2	13
21	Development of a 3D scanning method to discriminate blocks of Octopus minor with surplus water gain. Food Chemistry, 2020, 303, 125414.	4.2	2
22	Chemical profiles and antioxidant properties of roasted rice hull extracts in bulk oil and oil-in-water emulsion. Food Chemistry, 2019, 272, 242-250.	4.2	20
23	Addition of Sesamol Increases the Oxidative Stability of Beeswax Organogels and Beef Tallow Matrix Under UV Light Irradiation and Thermal Oxidation. Journal of Food Science, 2019, 84, 971-979.	1.5	4
24	Stability of Tocopherol Homologs in Bulk Oils at 60°C Oxidation and Chlorophyll Photosensitization by the Action of Moisture. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 707-714.	0.8	3
25	Extraction of Green Tea Phenolics Using Water Bubbled with Gases. Journal of Food Science, 2019, 84, 1308-1314.	1.5	16
26	Modification of chitosan using hydrogen peroxide and ascorbic acid and its physicochemical properties including water solubility, oil entrapment and <i>inÂvitro</i> lipase activity. International Journal of Food Science and Technology, 2019, 54, 2300-2308.	1.3	8
27	Prediction of oxidative stability in bulk oils using dielectric constant changes. Food Chemistry, 2019, 279, 216-222.	4.2	23
28	Lecithin Near Its Critical Micelle Concentration Increases Oxidative Stability of Nonâ€ S tripped Corn Oil But Not Stripped Corn Oil. European Journal of Lipid Science and Technology, 2019, 121, 1800219.	1.0	14
29	Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 2019, 122, 566-572.	2.9	110
30	Effect of Polar and Nonâ€Polar Compounds from Oxidized Oils on Oxidative Stability in Corn Oil. European Journal of Lipid Science and Technology, 2018, 120, 1700312.	1.0	10
31	The critical micelle concentration of lecithin in bulk oils and medium chain triacylglycerol is influenced by moisture content and total polar materials. Food Chemistry, 2018, 261, 194-200.	4.2	29
32	Effects of Hydrogenâ€Donating or Metalâ€Chelating Antioxidants on the Oxidative Stability of Organogels Made of Beeswax and Grapeseed Oil Exposed to Light Irradiation. Journal of Food Science, 2018, 83, 885-891.	1.5	7
33	Antioxidant Properties of Astaxanthin in Oilâ€inâ€Water Emulsions with Differentlyâ€Charged Emulsifiers Under Chlorophyll Photosensitization. Journal of Food Science, 2018, 83, 589-596.	1.5	10
34	Effects of chitosan and collagen containing α-tocopherol on the oxidative stability in bulk oil and oil-in-water emulsion. Food Science and Biotechnology, 2018, 27, 947-956.	1.2	4
35	Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix. Journal of Ginseng Research, 2018, 42, 320-326.	3.0	5
36	3D bioprinting and its <i>in vivo</i> applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 444-459.	1.6	174

#	Article	IF	CITATIONS
37	Volatile profiles and involvement step of moisture in bulk oils during oxidation by action of deuterium oxide (D2O). Food Science and Biotechnology, 2018, 27, 1327-1332.	1.2	8
38	Correlation of the Solidâ€Fat Content in Vegetable Oils with Other Parameters during Thermal Oxidation. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1179-1187.	0.8	4
39	Influence of Different Moisture Contents on the Stability of Tocochromanols in Bulk Oils at 25 °C Storage. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 197-207.	0.8	7
40	Oxidative stability of oil-in-water emulsions with α-tocopherol, charged emulsifier, and different oxidative stress. Food Science and Biotechnology, 2018, 27, 1571-1578.	1.2	15
41	Seed Oil (Sesame Seed, Perilla Seed). , 2018, , 291-318.		2
42	Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods. Journal of the Science of Food and Agriculture, 2017, 97, 3727-3732.	1.7	46
43	Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. Journal of Food Science, 2017, 82, 445-452.	1.5	89
44	A polycaprolactone/fish collagen/alginate biocomposite supplemented with phlorotannin for hard tissue regeneration. RSC Advances, 2017, 7, 2009-2018.	1.7	19
45	Oxidative properties and moisture content in repeatedly used oils for French fries and breaded chickens during frying. European Journal of Lipid Science and Technology, 2017, 119, 1600279.	1.0	9
46	Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils. Journal of Food Science, 2017, 82, 1608-1613.	1.5	8
47	Enhancing oxidative stability in heated oils using core/shell structures of collagen and α-tocopherol complex. Food Chemistry, 2017, 235, 160-166.	4.2	9
48	Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Science and Biotechnology, 2017, 26, 79-87.	1.2	86
49	Oxidative Stability in Oilâ€inâ€Water Emulsions with Quercetin or Rutin Under Iron Catalysis or Riboflavin Photosensitization. Journal of Food Science, 2017, 82, 890-896.	1.5	7
50	Effects of quercetin or rutin on the oxidative stability of stripped or non-stripped soybean oils containing α-tocopherol. European Journal of Lipid Science and Technology, 2017, 119, 1600329.	1.0	8
51	Stability of tocopherol homologs in soybean, corn, canola, and olive oils under different moisture contents at 25°C. European Journal of Lipid Science and Technology, 2017, 119, 1600157.	1.0	10
52	Oxidative Stability and Volatile Formations in Linoleic Acidâ€D ₂ 0 Models in the Presence of Deuteron or Electron Donors. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1385-1392.	0.8	4
53	Application of βâ€cyclodextrin, chitosan, and collagen on the stability of tocopherols and the oxidative stability in heated oils. European Journal of Lipid Science and Technology, 2017, 119, 1700124.	1.0	7
54	Erythorbyl laurate as a potential food additive with multi-functionalities: Interfacial characteristics and antioxidant activity. Food Chemistry, 2017, 215, 101-107.	4.2	36

#	Article	IF	CITATIONS
55	Monitoring changes in acid value, total polar material, and antioxidant capacity of oils used for frying chicken. Food Chemistry, 2017, 220, 306-312.	4.2	66
56	The amelioration of plasma lipids by Korean traditional confectionery in middle-aged women: A cross-over study with western cookie. Nutrition Research and Practice, 2016, 10, 590.	0.7	2
57	Rapid and Sensitive Determination of Lipid Oxidation Using the Reagent Kit Based on Spectrophotometry (FOODLAB <i>fat</i> System). Journal of Chemistry, 2016, 2016, 1-6.	0.9	9
58	Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness. Nutrients, 2016, 8, 439.	1.7	57
59	Effects of α-tocopherol on the oxidative stability and incorporation of deuterium in volatiles from a linoleic acid-deuterium model system. Food Science and Biotechnology, 2016, 25, 681-686.	1.2	0
60	Effects of moisture content and presence of γ-tocopherol on the stability of α-tocopherol in stripped corn oils. European Journal of Lipid Science and Technology, 2016, 118, 1926-1934.	1.0	9
61	Compositional analysis of walnut lipid extracts and properties as an anti-cancer stem cell regulator via suppression of the self-renewal capacity. Food Science and Biotechnology, 2016, 25, 623-629.	1.2	19
62	Development of a spectroscopic method to determine the content of free radical scavenging compounds and oxidation products in thermally oxidised oils. International Journal of Food Science and Technology, 2016, 51, 2424-2432.	1.3	26
63	Riboflavin Phototransformation on the Changes of Antioxidant Capacities in Phenolic Compounds. Journal of Food Science, 2016, 81, C1914-20.	1.5	5
64	Effects of emulsifier charges on the oxidative stability in oil-in-water emulsions under riboflavin photosensitization. Food Science and Biotechnology, 2016, 25, 1003-1009.	1.2	14
65	Evaluation of Antioxidant or Prooxidant Properties of Selected Amino Acids Using <i>In Vitro</i> Assays and in Oilâ€inâ€Water Emulsions Under Riboflavin Sensitization. Journal of Food Science, 2016, 81, C1118-23.	1.5	10
66	Effects of cis oleic and trans elaidic acids on oxidative stability in riboflavin and chlorophyll photosensitized oil-in-water emulsions. Food Science and Biotechnology, 2015, 24, 1645-1648.	1.2	6
67	Synergism of phosphatidylcholine on the antioxidant properties of αâ€ŧocopherol in corn oils under different relative humidity. International Journal of Food Science and Technology, 2015, 50, 1421-1428.	1.3	16
68	Antioxidant Properties of Aqueous Extract of Roasted Hulled Barley in Bulk Oil or Oilâ€inâ€Water Emulsion Matrix. Journal of Food Science, 2015, 80, C2382-8.	1.5	12
69	Analysis of Trans Fat in Edible Oils with Cooking Process. Toxicological Research, 2015, 31, 307-312.	1.1	41
70	Fabrication, characterisation and in vitro biological activities of a sulfuretin-supplemented nanofibrous composite scaffold for tissue engineering. RSC Advances, 2015, 5, 44943-44952.	1.7	10
71	Antioxidant properties of ascorbic acid in bulk oils at different relative humidity. Food Chemistry, 2015, 176, 302-307.	4.2	29
72	Effects of deuterium oxide on formation of volatiles in linoleic acid model systems at different temperatures and oxygen limitation conditions. Food Science and Biotechnology, 2015, 24, 41-46.	1.2	8

#	Article	IF	CITATIONS
73	3D-printed alginate/phenamil composite scaffolds constituted with microsized core–shell struts for hard tissue regeneration. RSC Advances, 2015, 5, 29335-29345.	1.7	9
74	Effects of Curcumin on the Oxidative Stability of Oils Depending on Type of Matrix, Photosensitizers, and Temperature. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 685-691.	0.8	18
75	Changes in isoflavone profiles and antioxidant activities in isoflavone extracts from soybeans and soyfoods under riboflavin photosensitization. Food Science and Biotechnology, 2015, 24, 1271-1277.	1.2	2
76	Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. Journal of Functional Foods, 2015, 12, 208-218.	1.6	55
77	Effects of relative humidity on the antioxidant properties of α-tocopherol in stripped corn oil. Food Chemistry, 2015, 167, 191-196.	4.2	43
78	Estimating the time of frying oils have been used for French fries based on profile changes of fatty acids derived from heated oil model systems. Food Science and Biotechnology, 2014, 23, 1405-1410.	1.2	1
79	Effect of ultravioletâ€ <scp>B</scp> irradiation on antioxidative properties of aqueous extracts from shiitake (<i><scp>L</scp>entinus edodes</i>) mushrooms. International Journal of Food Science and Technology, 2014, 49, 2276-2282.	1.3	11
80	Oxidative stability of solid fats containing ethylcellulose determined based on the headspace oxygen content. Food Science and Biotechnology, 2014, 23, 1779-1784.	1.2	29
81	Effects of Deuterium Oxide on the Oxidative Stability and Change of Headspace Volatiles of Corn Oil. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 623-628.	0.8	13
82	Evaluation of Oxygenâ€Limitation on Lipid Oxidation and Moisture Content in Corn Oil at Elevated Temperature. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 439-444.	0.8	36
83	Riboflavin photo-transformation of genistein and changes in radical scavenging activities of photo-transformed genistein derivatives. Food Science and Biotechnology, 2014, 23, 1055-1059.	1.2	5
84	Evaluation of In vitro antioxidant properties of roasted hulled barley (Hordeum vulgare L.). Food Science and Biotechnology, 2014, 23, 1073-1079.	1.2	11
85	Oxidative Stability in Bulk Oil Containing Carbohydrates Such as Glucose, Sucrose, Maltose, Mannitol, and Starch. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1387-1395.	0.8	2
86	Role of moisture on the lipid oxidation determined by D2O in a linoleic acid model system. Food Chemistry, 2014, 146, 134-140.	4.2	40
87	Determination of the degree of oxidation in highly-oxidised lipids using profile changes of fatty acids. Food Chemistry, 2013, 138, 1792-1799.	4.2	41
88	Monitoring of radical scavenging compounds from oxidized lipids (RSOL) by 2,4-dinitrophenylhydrazine (DNPH) derivatization in thermally oxidized linoleic acid and lard systems. Food Science and Biotechnology, 2013, 22, 161-165.	1.2	2
89	Effects of heat treatment and visible light exposure on the oxidative stability of rice bran and of rice bran oil. Food Science and Biotechnology, 2013, 22, 1-6.	1.2	4
90	Prooxidative and antioxidative properties of β-carotene in chlorophyll and riboflavin photosensitized oil-in-water emulsions. Food Chemistry, 2013, 140, 255-261.	4.2	11

#	Article	IF	CITATIONS
91	Effects of visible light irradiation on the oxidative stability in rice bran. Journal of Cereal Science, 2013, 58, 178-181.	1.8	11
92	Comparison of Antioxidant Capacities of Rosmarinate Alkyl Esters in Riboflavin Photosensitized Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 225-232.	0.8	20
93	Effects of lipophilic and hydrophilic antioxidants in oil-in-water emulsions under chlorophyll photosensitization. Food Science and Biotechnology, 2013, 22, 125-130.	1.2	3
94	Antioxidant and pro-oxidant activities of n-hexane extracts from vegetables and by-products of agricultural products in bulk oils at 60 and 140°C heating. Food Science and Biotechnology, 2013, 22, 1-5.	1.2	3
95	Aldehydes from Oxidized Lipids Can React with 2,2â€Diphenylâ€1â€Picrylhydrazyl (DPPH) Free Radicals in Isooctane Systems. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1831-1838.	0.8	11
96	Sodium azide and metal chelator effects on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging compounds from methylene blue photosensitized lard. European Journal of Lipid Science and Technology, 2012, 114, 780-786.	1.0	13
97	Antioxidant and prooxidant activities of β-carotene in accelerated autoxidation and photosensitized model systems. Food Science and Biotechnology, 2012, 21, 607-611.	1.2	19
98	Antioxidant capacities of α-tocopherol, trolox, ascorbic acid, and ascorbyl palmitate in riboflavin photosensitized oil-in-water emulsions. Food Chemistry, 2012, 133, 68-75.	4.2	58
99	Effects of chlorophyll photosensitisation on the oxidative stability in oil-in-water emulsions. Food Chemistry, 2012, 133, 1449-1455.	4.2	23
100	Correlation of antioxidant content and absorbance changes of DPPH during lipid oxidation. Food Science and Biotechnology, 2012, 21, 199-203.	1.2	15
101	Effects of Metal Chelator, Sodium Azide, and Superoxide Dismutase on the Oxidative Stability in Riboflavin-Photosensitized Oil-in-Water Emulsion Systems. Journal of Agricultural and Food Chemistry, 2011, 59, 6271-6276.	2.4	52
102	Effects of Roasting Conditions on the Physicochemical Properties and Volatile Distribution in Perilla Oils (<i>Perilla frutescens</i> â€,var.â€, <i>japonica</i>). Journal of Food Science, 2011, 76, C808-16.	1.5	24
103	Volatile distribution in garlic (Allium sativum L.) by solid phase microextraction (SPME) with different processing conditions. Food Science and Biotechnology, 2011, 20, 775-782.	1.2	54
104	Distribution of Triacylglycerols and Fatty Acids in Soybean Oil with Thermal Oxidation and Methylene Blue Photosensitization. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 373-380.	0.8	7
105	Evaluation of antioxidant capacity of sesamol and free radical scavengers at different heating temperatures. European Journal of Lipid Science and Technology, 2011, 113, 910-915.	1.0	43
106	Application of DPPH absorbance method to monitor the degree of oxidation in thermally-oxidized oil model system with antioxidants. Food Science and Biotechnology, 2010, 19, 253-256.	1.2	7
107	Radical scavenging activity and anti-obesity effects in 3T3-L1 preadipocyte differentiation of Ssuk (Artemisia princeps Pamp.) extract. Food Science and Biotechnology, 2010, 19, 535-540.	1.2	26
108	Analysis of volatile compounds from chlorophyll photosensitized linoleic acid by headspace solid-phase microextraction (HS-SPME). Food Science and Biotechnology, 2010, 19, 611-616.	1.2	35

#	Article	IF	CITATIONS
109	Effect of 1-monocaprin addition on the emulsion stability and the storage stability of mayonnaise. Food Science and Biotechnology, 2010, 19, 1227-1232.	1.2	7
110	Correlation of volatiles and fatty acids in thermally oxidized fatty acid model systems using statistical approaches. Food Science and Biotechnology, 2010, 19, 1233-1239.	1.2	12
111	Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chemistry, 2010, 118, 681-685.	4.2	126
112	Application of triacylglycerol and fatty acid analyses to discriminate blended sesame oil with soybean oil. Food Chemistry, 2010, 123, 377-383.	4.2	62
113	Radical scavenging activity and apoptotic effects in HTâ€29 human colon cancer cells of black sesame seed extract. International Journal of Food Science and Technology, 2009, 44, 2106-2112.	1.3	12
114	Isoflavone profiles, phenol content, and antioxidant activity of soybean seeds as influenced by cultivar and growing location in Ohio. Journal of the Science of Food and Agriculture, 2007, 87, 1197-1206.	1.7	67
115	Development of a method predicting the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Food Chemistry, 2007, 103, 662-669.	4.2	102