Yuning Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7237597/publications.pdf

Version: 2024-02-01

20 papers	697	16 h-index	713466 21 g-index
			<i>3</i>
25 all docs	25 docs citations	25 times ranked	1132 citing authors

#	Article	IF	CITATIONS
1	Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory. Journal of Hydrometeorology, 2013, 14, 1401-1420.	1.9	85
2	Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior. Water Resources Research, 2017, 53, 2346-2367.	4.2	76
3	Understanding watershed hydrogeochemistry: 1. Development of RTâ€Fluxâ€PlHM. Water Resources Research, 2017, 53, 2328-2345.	4.2	58
4	Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment. Water Resources Research, 2014, 50, 706-724.	4.2	53
5	Designing a suite of measurements to understand the critical zone. Earth Surface Dynamics, 2016, 4, 211-235.	2.4	49
6	Designing a Suite of Models to Explore Critical Zone Function. Procedia Earth and Planetary Science, 2014, 10, 7-15.	0.6	40
7	Susquehanna Shale Hills Critical Zone Observatory: Shale Hills in the Context of Shaver's Creek Watershed. Vadose Zone Journal, 2018, 17, 1-19.	2.2	36
8	Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: A multivariate real-data experiment. Advances in Water Resources, 2015, 83, 421-427.	3.8	34
9	Parameterization for distributed watershed modeling using national data and evolutionary algorithm. Computers and Geosciences, 2013, 58, 80-90.	4.2	32
10	Signatures of Hydrologic Function Across the Critical Zone Observatory Network. Water Resources Research, 2021, 57, e2019WR026635.	4.2	31
11	Evaluation of the Parameter Sensitivities of a Coupled Land Surface Hydrologic Model at a Critical Zone Observatory. Journal of Hydrometeorology, 2014, 15, 279-299.	1.9	29
12	Simulating highâ€resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrological Processes, 2015, 29, 4624-4637.	2.6	29
13	Streamflow Generation From Catchments of Contrasting Lithologies: The Role of Soil Properties, Topography, and Catchment Size. Water Resources Research, 2019, 55, 9234-9257.	4.2	26
14	Soil carbon saturation, productivity, and carbon and nitrogen cycling in crop-pasture rotations. Agricultural Systems, 2019, 171, 13-22.	6.1	25
15	Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory. Ecological Modelling, 2018, 380, 8-21.	2.5	23
16	Exploring the Effect of Aspect to Inform Future Earthcasts of Climateâ€Driven Changes in Weathering of Shale. Journal of Geophysical Research F: Earth Surface, 2019, 124, 974-993.	2.8	20
17	Watershed model calibration to the base flow recession curve with and without evapotranspiration effects. Water Resources Research, 2016, 52, 2919-2933.	4.2	12
18	Spatial and Temporal Variability of Root-Zone Soil Moisture Acquired From Hydrologic Modeling and AirMOSS P-Band Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4578-4590.	4.9	10

Yuning Shi

#	Article	lF	CITATIONS
19	Observing and Simulating Spatial Variations of Forest Carbon Stocks in Complex Terrain. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005160.	3.0	7
20	BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale. Geoscientific Model Development, 2022, 15, 315-333.	3.6	7