
Christophe Masselon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AT_CHLORO, a Comprehensive Chloroplast Proteome Database with Subplastidial Localization and Curated Information on Envelope Proteins. Molecular and Cellular Proteomics, 2010, 9, 1063-1084.	2.5	425
2	Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11049-11054.	3.3	383
3	Isotope dilution strategies for absolute quantitative proteomics. Journal of Proteomics, 2009, 72, 740-749.	1.2	292
4	Enrichment of Integral Membrane Proteins for Proteomic Analysis Using Liquid Chromatographyâ [~] Tandem Mass Spectrometry. Journal of Proteome Research, 2002, 1, 351-360.	1.8	226
5	Multiplexed and dataâ€independent tandem mass spectrometry for global proteome profiling. Mass Spectrometry Reviews, 2014, 33, 452-470.	2.8	218
6	Chloroplast Proteomics and the Compartmentation of Plastidial Isoprenoid Biosynthetic Pathways. Molecular Plant, 2009, 2, 1154-1180.	3.9	199
7	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	9.0	198
8	Ultrasensitive Proteomics Using High-Efficiency On-Line Micro-SPE-NanoLC-NanoESI MS and MS/MS. Analytical Chemistry, 2004, 76, 144-154.	3.2	188
9	High Throughput Quantitative Analysis of Serum Proteins Using Glycopeptide Capture and Liquid Chromatography Mass Spectrometry. Molecular and Cellular Proteomics, 2005, 4, 144-155.	2.5	187
10	Proteomic analyses using an accurate mass and time tag strategy. BioTechniques, 2004, 37, 621-639.	0.8	155
11	Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Progress in Lipid Research, 2010, 49, 128-158.	5.3	153
12	Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics - Clinical Applications, 2010, 4, 464-478.	0.8	139
13	Neutral particle mass spectrometry with nanomechanical systems. Nature Communications, 2015, 6, 6482.	5.8	120
14	Aberrant mobility phenomena of the DNA repair protein XPA. Protein Science, 2001, 10, 1353-1362.	3.1	116
15	A toolbox for validation of mass spectrometry peptides identification and generation of database: IRMa. Bioinformatics, 2009, 25, 1980-1981.	1.8	115
16	Accurate Mass Multiplexed Tandem Mass Spectrometry for High-Throughput Polypeptide Identification from Mixtures. Analytical Chemistry, 2000, 72, 1918-1924.	3.2	112
17	Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Science, 2001, 10, 560-571.	3.1	108
18	High-Efficiency On-Line Solid-Phase Extraction Coupling to 15â^'150-μm-i.d. Column Liquid Chromatography for Proteomic Analysis. Analytical Chemistry, 2003, 75, 3596-3605.	3.2	104

CHRISTOPHE MASSELON

#	Article	IF	CITATIONS
19	Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry. Electrophoresis, 2001, 22, 1652-1668.	1.3	101
20	Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science, 2018, 362, 918-922.	6.0	92
21	High-Throughput Peptide Identification from Protein Digests Using Data-Dependent Multiplexed Tandem FTICR Mass Spectrometry Coupled with Capillary Liquid Chromatography. Analytical Chemistry, 2001, 73, 3312-3322.	3.2	84
22	Design and Performance of an ESI Interface for Selective External Ion Accumulation Coupled to a Fourier Transform Ion Cyclotron Mass Spectrometer. Analytical Chemistry, 2001, 73, 253-261.	3.2	84
23	Mass measurement errors caused by "local―frequency perturbations in FTICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 99-106.	1.2	79
24	Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nature Communications, 2018, 9, 3283.	5.8	79
25	Review: The Use of Accurate Mass Tags for High-Throughput Microbial Proteomics. OMICS A Journal of Integrative Biology, 2002, 6, 61-90.	1.0	71
26	Integration of Electrokinetic-Based Multidimensional Separation/Concentration Platform with Electrospray Ionization-Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry for Proteome Analysis ofShewanella oneidensis. Analytical Chemistry, 2003, 75, 4432-4440.	3.2	70
27	ESI-FTICR mass spectrometry employing Data-dependent external ion selection and accumulation. Journal of the American Society for Mass Spectrometry, 2002, 13, 144-154.	1.2	69
28	Collisional activation of ions in RF ion traps and ion guides: The effective ion temperature treatment. Journal of the American Society for Mass Spectrometry, 2004, 15, 1616-1628.	1.2	63
29	Increased proteome coverage for quantitative peptide abundance measurements based upon high performance separations and DREAMS FTICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 954-963.	1.2	56
30	Toward a standardized urine proteome analysis methodology. Proteomics, 2011, 11, 1160-1171.	1.3	56
31	Optomechanical mass spectrometry. Nature Communications, 2020, 11, 3781.	5.8	56
32	FTICR mass spectrometry for qualitative and quantitative bioanalyses. Current Opinion in Biotechnology, 2004, 15, 3-11.	3.3	54
33	Surface Acoustic Wave Nebulization Facilitating Lipid Mass Spectrometric Analysis. Analytical Chemistry, 2012, 84, 6530-6537.	3.2	54
34	Surface Acoustic Wave Nebulization Produces Ions with Lower Internal Energy than Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 2012, 23, 1062-1070.	1.2	53
35	Peptide Storage: Are You Getting the Best Return on Your Investment? Defining Optimal Storage Conditions for Proteomics Samples. Journal of Proteome Research, 2009, 8, 3778-3785.	1.8	50
36	Ion discrimination during ion accumulation in a quadrupole interface external to a Fourier transform ion cyclotron resonance mass spectrometer. International Journal of Mass Spectrometry, 2001, 208, 205-225.	0.7	48

#	Article	IF	CITATIONS
37	Nanoscale proteomics. Analytical and Bioanalytical Chemistry, 2004, 378, 1037-1045.	1.9	47
38	Targeted Comparative Proteomics by Liquid Chromatography-Tandem Fourier Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2005, 77, 400-406.	3.2	47
39	Retrieval of DNA Using Soft-Landing after Mass Analysis by ESI-FTICR for Enzymatic Manipulation. Journal of the American Chemical Society, 1999, 121, 8961-8962.	6.6	43
40	Identification of Cellular Targets in Human Intrahepatic Cholangiocarcinoma Using Laser Microdissection and Accurate Mass and Time Tag Proteomics. Molecular and Cellular Proteomics, 2010, 9, 1991-2004.	2.5	43
41	Investigating the macropinocytic proteome of <i>Dictyostelium</i> amoebae by highâ€resolution mass spectrometry. Proteomics, 2012, 12, 241-245.	1.3	40
42	Development of a Protein Standard Absolute Quantification (PSAQâ,,¢) assay for the quantification of Staphylococcus aureus enterotoxin A in serum. Journal of Proteomics, 2012, 75, 3041-3049.	1.2	39
43	Gene expression profiling using advanced mass spectrometric approaches. Journal of Mass Spectrometry, 2002, 37, 1185-1198.	0.7	38
44	Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst, The, 2016, 141, 4816-4832.	1.7	33
45	Characterization of human alcohol dehydrogenase isoenzymes by capillary isoelectric focusing — mass spectrometry. Electrophoresis, 2000, 21, 2368-2375.	1.3	31
46	Identification of tryptic peptides from large databases using multiplexed tandem mass spectrometry: simulations and experimental results. Proteomics, 2003, 3, 1279-1286.	1.3	31
47	Considerations for electron capture dissociation efficiency in FTICR mass spectrometry. International Journal of Mass Spectrometry, 2004, 234, 131-136.	0.7	28
48	Laser desorption Fourier transform ion cyclotron resonance mass spectrometry of selected pesticides extracted on C18silica solid-phase extraction membranes. Analyst, The, 1996, 121, 1429-1433.	1.7	25
49	Large-Scale SRM Screen of Urothelial Bladder Cancer Candidate Biomarkers in Urine. Journal of Proteome Research, 2017, 16, 1617-1631.	1.8	25
50	Simulation of interstellar aromatic hydrocarbons using ion cyclotron resonance. Preliminary results. Rapid Communications in Mass Spectrometry, 1997, 11, 1619-1623.	0.7	24
51	Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry of luteinizing hormone releasing hormone-metal ion complexes. Journal of the American Society for Mass Spectrometry, 1999, 10, 19-26.	1.2	23
52	Standardization of retention time data for AMT tag proteomics database generation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 433-440.	1.2	22
53	Beyond laser microdissection technology: follow the yellow brick road for cancer research. American Journal of Cancer Research, 2014, 4, 1-28.	1.4	22
54	Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements. Journal of Chromatography A, 2016, 1439, 161-166.	1.8	21

#	Article	IF	CITATIONS
55	Prospects for monolithic nano-LC columns in shotgun proteomics. Analytical and Bioanalytical Chemistry, 2008, 392, 1291-1297.	1.9	16
56	Efficient Exploitation of Separation Space in Two-Dimensional Liquid Chromatography System for Comprehensive and Efficient Proteomic Analyses. Analytical Chemistry, 2016, 88, 11734-11741.	3.2	16
57	A dynamic ion cooling technique for FTICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 2001, 12, 1169-1173.	1.2	14
58	Influence of mass resolution on species matching in accurate mass and retention time (AMT) tag proteomics experiments. Rapid Communications in Mass Spectrometry, 2008, 22, 986-992.	0.7	13
59	Laser-desorption Fourier-transform mass spectrometry of triazines adsorbed on solid-phase extraction membranes. Rapid Communications in Mass Spectrometry, 1994, 8, 22-25.	0.7	11
60	Dynamically assisted gated trapping for Fourier transform ion cyclotron mass spectrometry. Rapid Communications in Mass Spectrometry, 2001, 15, 1558-1561.	0.7	10
61	Inversion of chromatographic elution orders of peptides and its importance for proteomics. Journal of Analytical Chemistry, 2012, 67, 1014-1025.	0.4	10
62	Urine Sample Preparation and Fractionation for Global Proteome Profiling by LC-MS. Methods in Molecular Biology, 2015, 1243, 175-186.	0.4	9
63	Tailored noise waveform/collision-induced dissociation of ions stored in a linear ion trap combined with liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 2682-2690.	0.7	8
64	Use of models of biomacromolecule separation in AMT database generation for shotgun proteomics. Biochemistry (Moscow), 2009, 74, 1195-1202.	0.7	8
65	Frequency shifts due to the interference of resolved peaks in magnitude-mode Fourier-transform ion cyclotron resonance mass spectra. Journal of the American Society for Mass Spectrometry, 2002, 13, 387-401.	1.2	7
66	hEIDI: An Intuitive Application Tool To Organize and Treat Large-Scale Proteomics Data. Journal of Proteome Research, 2016, 15, 3896-3903.	1.8	7
67	High-Performance Separations and Mass Spectrometric Methods for High-Throughput Proteomics using accurate Mass Tags. Advances in Protein Chemistry, 2003, 65, 85-131.	4.4	5
68	AMT Tag Approach to Proteomic Characterization ofDeinococcus radioduransandShewanella oneidensis. Methods of Biochemical Analysis, 2005, , 113-134.	0.2	4
69	Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry. Methods in Molecular Biology, 2019, 1959, 129-150.	0.4	4
70	Proofreading Activity of Pfu Thermostable DNA Polymerase on a 6-O-Methylguanine-Containing Template Monitored by ESI-FTICR Mass Spectrometry. ChemBioChem, 2004, 5, 1012-1015.	1.3	3
71	Requirements and attributes of nano-resonator mass spectrometry for the analysis of intact viral particles. Analytical and Bioanalytical Chemistry, 2021, 413, 7147-7156.	1.9	2
72	Shining a spotlight on intact proteins. Proteomics, 2014, 14, 1125-1127.	1.3	1

#	Article	IF	CITATIONS
73	A Nonlinear Model for Nano-Electro Mechanical Mass Sensing Signals Processing. IEEE Sensors Journal, 2021, 21, 21852-21861.	2.4	1
74	Reply to â€ [~] Comparison of peptide retention prediction algorithm in reversed-phase chromatography. Comment on "Predictive chromatography of peptides and proteins as a complementary tool for proteomicsâ€â€™, by O. V. Krokhin, Analyst, 2017, 142, DOI: 10.1039/c6an02510b. Analyst, The, 2017, 142, 2052-2053.	1.7	0
75	Very Large Scale Integration Optomechanics: a cure for loneliness of NEMS resonators?. , 2018, , .		0