Wayne Martindale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Resource Flows in the Food System. , 2022, , 219-257.		1
2	Charting Past, Present, and Future Research in the Semantic Web and Interoperability. Future Internet, 2022, 14, 161.	3.8	7
3	The Russia-Ukraine Conflict: Its Implications for the Global Food Supply Chains. Foods, 2022, 11, 2098.	4.3	138
4	Transformational Steam Infusion Processing for Resilient and Sustainable Food Manufacturing Businesses. Foods, 2021, 10, 1763.	4.3	3
5	Codesign of Food System and Circular Economy Approaches for the Development of Livestock Feeds from Insect Larvae. Foods, 2021, 10, 1701.	4.3	26
6	A review of robotics and autonomous systems in the food industry: From the supply chains perspective. Trends in Food Science and Technology, 2020, 106, 355-364.	15.1	57
7	Testing the data platforms required for the 21st century food system using an industry ecosystem approach. Science of the Total Environment, 2020, 724, 137871.	8.0	16
8	Interacting with Members of the Public to Discuss the Impact of Food Choices on Climate Change—Experiences from Two UK Public Engagement Events. Sustainability, 2020, 12, 2323.	3.2	7
9	The Impact of Resource and Nutritional Resilience on the Global Food Supply System. Sustainability, 2020, 12, 751.	3.2	13
10	Impact of salt and sugar reformulation on processing parameters for orange juice and tomatoes using ohmic heating. British Food Journal, 2019, 122, 75-86.	2.9	1
11	Cutting Through the Challenge of Improving the Consumer Experience of Foods by Enabling the Preparation of Sustainable Meals and the Reduction of Food Waste. , 2017, , 7-23.		7
12	The potential of food preservation to reduce food waste. Proceedings of the Nutrition Society, 2017, 76, 28-33.	1.0	14
13	The impact of food preservation on food waste. British Food Journal, 2017, 119, 2510-2518.	2.9	30
14	Using consumer surveys to determine food sustainability. British Food Journal, 2014, 116, 1194-1204.	2.9	43
15	Priority research questions for the UK food system. Food Security, 2013, 5, 617-636.	5.3	67
16	Carbon, food and fuel security – will biotechnology solve this irreconcilable trinity?. Biotechnology and Genetic Engineering Reviews, 2010, 27, 115-134.	6.2	7
17	Price of popularity. New Scientist, 2009, 201, 25.	0.0	0
18	Fuelling the 9 billion. Nature Biotechnology, 2008, 26, 1068-1070.	17.5	19

WAYNE MARTINDALE

#	Article	IF	CITATIONS
19	Cool on potato. New Scientist, 2008, 200, 20-21.	0.0	0
20	Integrating Education, Extension and Research for the Development of Sustainable Grazing Systems — Australian Landcare and the PROGRAZEâ"¢ training programmes. Bioscience Education, 2004, 3, 1-5.	0.4	5
21	Crystallization of the NADP-dependent β-keto acyl-carrier protein reductase from Brassica napus. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 86-88.	2.5	5
22	The X-ray structure of Brassica napus \hat{l}^2 -keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure, 2000, 8, 339-347.	3.3	88
23	Crystallization of the NADP-dependent β-keto acyl carrier protein reductase from Escherichia coli. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 427-429.	2.5	4
24	Synthesis of 21-carboxy-D-arabinitol-1-phosphate in French bean (Phaseolus vulgarisL.): a search for precursors. Journal of Experimental Botany, 1997, 48, 9-14.	4.8	11
25	Acclimation of photosynthesis to low temperature inSpinacia oleraceaL. I. Effects of acclimation on CO2assimilation and carbon partitioning. Journal of Experimental Botany, 1997, 48, 1865-1872.	4.8	38
26	Acclimation of photosynthesis to low temperature inSpinacia oleraceaL. II. Effects of nitrogen supply. Journal of Experimental Botany, 1997, 48, 1873-1880.	4.8	33
27	Acclimation of photosynthesis to low temperature in Spinacia oleracea L. I. Effects of acclimation on CO2 assimilation and carbon partitioning. Journal of Experimental Botany, 1997, 48, 1865-1872.	4.8	8
28	Acclimation of photosynthesis to low temperature in Spinacia oleracea L. II. Effects of nitrogen supply. Journal of Experimental Botany, 1997, 48, 1873-1880.	4.8	4
29	Conversion of D-Hamamelose into 2-Carboxy-D-arabinitol and 2-Carboxy-D-arabinitol 1-Phosphate in Leaves of Phaseolus vulgaris L Journal of Biological Chemistry, 1996, 271, 26803-26809.	3.4	21
30	The effects of irradiance and CO2on the activity and activation of ribulose-1, 5-bisphosphate carboxylase/ oxygenase in the aquatic plant Spirodela polyrhiza. Journal of Experimental Botany, 1996, 47, 781-784.	4.8	10
31	Changes in Activities of Enzymes of Carbon Metabolism in Leaves during Exposure of Plants to Low Temperature. Plant Physiology, 1992, 98, 1105-1114.	4.8	253
32	Framing food security and food loss statistics for incisive supply chain improvement and knowledge transfer between Kenyan, Indian and United Kingdom food manufacturers. Emerald Open Research, 0, 2, 12.	0.0	3