
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236551/publications.pdf Version: 2024-02-01

Δ΄ ΖΑΠΑΝ ΚΟΡΚΜΑΖ

#	Article	IF	CITATIONS
1	Optical properties of Nb2O5 doped ZnO nanocomposite thin film deposited by thermionic vacuum arc. Optik, 2022, 258, 168928.	2.9	4
2	Substrate effect on electrochromic properties of Nb2O5:TiO2 nanocomposite thin films deposited by thermionic vacuum arc. Vacuum, 2022, 202, 111186.	3.5	2
3	Deep understanding in physical and electrochemical performance of WO3–TiO2 nanocomposite thin films deposited onto ITO and FTO coated glass substrates using a thermionic vacuum arc deposition system. Physica B: Condensed Matter, 2022, 640, 414093.	2.7	5
4	Studies on the morphological, structural, optical and electrical properties of Fe-doped ZnO magnetic nano-crystal thin films. Physica B: Condensed Matter, 2021, 609, 412921.	2.7	14
5	Enhanced cycle performance and stability for an electrochromic application; detailed surface and electrochromic analysis of MXene (Ti ₂ AlC)-doped Nb ₂ O ₅ cathodic coloration layer. 2D Materials, 2021, 8, 045013.	4.4	10
6	Investigation of Al-doped CuO thin film deposition by the thermionic vacuum arc technique. Transactions of the Institute of Metal Finishing, 2021, 99, 286-291.	1.3	3
7	Studies on the surface and optical properties of Ta-doped ZnO thin films deposited by thermionic vacuum arc. Optical and Quantum Electronics, 2021, 53, 1.	3.3	1
8	Electrochromic properties of UV-colored WO3 thin film deposited by thermionic vacuum arc. Journal of Materials Science: Materials in Electronics, 2020, 31, 1293-1301.	2.2	14
9	Surface, optical and electrochemical performance of indium-doped ZnO/WO3 nano-composite thin films. SN Applied Sciences, 2020, 2, 1.	2.9	10
10	Detailed transmittance analysis of high-performance SnO2-doped WO3 thin films in UV–Vis region for electrochromic devices. Journal of Materials Science: Materials in Electronics, 2020, 31, 19074-19084.	2.2	5
11	Investigation of TiO2 thin films as a cathodic material for electrochromic display devices. Journal of Materials Science: Materials in Electronics, 2020, 31, 9568-9578.	2.2	12
12	Two-dimensional BN-doped ZnO thin-film deposition by a thermionic vacuum arcÂsystem. Journal of Materials Science: Materials in Electronics, 2020, 31, 6948-6955.	2.2	11
13	Electrochromic Properties of Graphene Doped TiO2 Layer Deposited by Thermionic Vacuum Arc. ECS Journal of Solid State Science and Technology, 2020, 9, 061016.	1.8	3
14	Electrochromic Properties of Graphene Doped Nb ₂ O ₅ Thin Film. ECS Journal of Solid State Science and Technology, 2020, 9, 125004.	1.8	10
15	Determination of the structural, morphological and optical properties of graphene doped SnO thin films deposited by using thermionic vacuum arc technique. Physica B: Condensed Matter, 2019, 569, 14-19.	2.7	18
16	Investigation of physical properties and surface free energy of produced ITO thin films by TVA technique. Journal of Materials Science: Materials in Electronics, 2019, 30, 8876-8882.	2.2	5
17	The Thermionic Vacuum Arc Method for Rapid Deposition of Cu/CuO/Cu2O Thin Film. Journal of Electronic Materials, 2019, 48, 2272-2277.	2.2	6
18	Determination of physical properties of graphene doped ZnO (ZnO:Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique, Physica B: Condensed Matter, 2019, 557, 27-33	2.7	27

#	Article	IF	CITATIONS
19	Al doped ZnO thin film deposition by thermionic vacuum arc. Journal of Materials Science: Materials in Electronics, 2019, 30, 624-630.	2.2	9
20	Investigation of the optical properties of the Cr doped CuxO thin film deposited by thermionic vacuum arc plasma. Optik, 2019, 180, 350-354.	2.9	4
21	Investigation of the microstructural, surface and optical properties of nano-layer MoxSy thin film deposited by thermionic vacuum arc. Materials Research Express, 2019, 6, 036411.	1.6	2
22	The microstructural, surface, optical and electrochemical impedance spectroscopic study of the semitransparent all-solid-state thin film battery. Materials Research Express, 2019, 6, 015503.	1.6	2
23	Sn doped ZnO thin film deposition using thermionic vacuum arc technique. Journal of Alloys and Compounds, 2019, 774, 1017-1023.	5.5	21
24	Optical, surface and magnetic properties of the Ti-doped GaN nanosheets on glass and PET substrates by thermionic vacuum arc (TVA) method. Particulate Science and Technology, 2019, 37, 333-338.	2.1	6
25	An investigation on the half-cell production for transparent secondary type solid-state batteries. Vacuum, 2018, 153, 112-116.	3.5	4
26	Investigation of the structural, surface, optical and electrical properties of the Indium doped CuxO thin films deposited by a thermionic vacuum arc. Materials Research Express, 2018, 5, 035909.	1.6	6
27	The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique. Materials Research Express, 2018, 5, 026403.	1.6	11
28	A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates. Journal of Electronic Materials, 2018, 47, 167-172.	2.2	8
29	Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc. Journal of Electronic Materials, 2018, 47, 3727-3732.	2.2	6
30	Microstructural, surface and electrochemical properties of the nano layered LiCoO 2 thin film cathode for Li ion battery. Vacuum, 2018, 152, 248-251.	3.5	7
31	Optical, surface, and microstructural properties of Li ₄ Ti ₅ O ₁₂ thin films coated by RF magnetron sputtering. Particulate Science and Technology, 2018, 36, 1037-1042.	2.1	2
32	Investigation of the substrate effect for Zr doped ZnO thin film deposition by thermionic vacuum arc technique. Journal of Materials Science: Materials in Electronics, 2018, 29, 18098-18104.	2.2	14
33	Cubic BN thin film deposition by a RF magnetron sputtering. Vacuum, 2018, 157, 31-35.	3.5	9
34	LiFePO ₄ thin film deposition onto Ag coated glass by RF magnetron sputtering. Materials Research Express, 2018, 5, 116401.	1.6	2
35	Investigation of the surface, morphological and optical properties of boron– doped ZnO thin films deposited by thermionic vacuum arc technique. Materials Research Express, 2018, 5, 066419.	1.6	9
36	Investigation of the optical properties of the indium-doped ZnO thin films deposited by a thermionic vacuum arc. Optik, 2018, 157, 667-674.	2.9	26

#	Article	IF	CITATIONS
37	The Electrochemical Performance of the High Transparent Nanolayered Type LiFePo4 Cathode Battery System. Materials Focus, 2018, 7, 683-688.	0.4	0
38	A new method for titania thin film production. Journal of Thermoplastic Composite Materials, 2017, 30, 808-815.	4.2	4
39	Investigation on the physical properties of C-doped ZnO thin films deposited by the thermionic vacuum arc. European Physical Journal Plus, 2017, 132, 1.	2.6	12
40	A new technique for transparent solid state Li3PO4 electrolyte layer growth: thermionic vacuum arc technique. Journal of Materials Science: Materials in Electronics, 2017, 28, 11557-11561.	2.2	1
41	Effect of XRD relative intensities of the Li (002) on surface, optical and electrochemical impedance spectroscopy analyses of the deposited LiCoO2 thin film. Journal of Materials Science: Materials in Electronics, 2017, 28, 9289-9294.	2.2	3
42	The transparent all-solid-state rechargeable micro-battery manufacturing by RF magnetron sputtering. Journal of Alloys and Compounds, 2017, 713, 64-68.	5.5	13
43	The Al doping effect on the surface, optical, electrical and nanomechanical properties of the ZnO and AZO thin films prepared by RF sputtering technique. Vacuum, 2017, 141, 210-215.	3.5	45
44	The substrate effect on Ge doped GaN thin films coated by thermionic vacuum arc. Journal of Materials Science: Materials in Electronics, 2017, 28, 1288-1293.	2.2	6
45	Investigation of the some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique. Journal of Materials Science: Materials in Electronics, 2017, 28, 14131-14137.	2.2	13
46	A study on some physical properties of a Pb-doped GaAs thin film produced by thermionic vacuum arc. Journal of Alloys and Compounds, 2017, 720, 383-387.	5.5	5
47	Transparent nano layered Li3PO4 coatings on bare and ITO coated glass by thermionic vacuum arc method. Journal of Materials Science: Materials in Electronics, 2017, 28, 19010-19016.	2.2	3
48	Electrochromic properties of TiO 2 thin films grown by thermionic vacuum arc method. Thin Solid Films, 2017, 640, 27-32.	1.8	39
49	Surface and optical properties of transparent Li3PO4 thin films deposited by magnetron sputtering technique. Journal of Materials Science: Materials in Electronics, 2017, 28, 14499-14503.	2.2	5
50	The surface morphology research of the BGaN thin films deposited by thermionic vacuum arc. Vacuum, 2017, 135, 50-54.	3.5	10
51	Zn/ZnSe thin films deposition by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2017, 28, 2833-2837.	2.2	21
52	Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique. Journal of Electronic Materials, 2017, 46, 1-5.	2.2	84
53	The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc. Materials Research Express, 2017, 4, 096404.	1.6	21
		" 。	

⁵⁴ TERMİYONİK VAKUM ARK İLE ÜRETİLEN InGaAsN İNCE FİLMLERİN BAZI FİZİKSEL ÖZELLİKLERİ, UludaÄŸ University Journal of the Faculty of Engineering, 2017, 22, 121-128.

#	Article	IF	CITATIONS
55	Optical and surface properties of optically transparent Li ₃ PO ₄ solid electrolyte layer for transparent solid batteries. Scanning, 2016, 38, 317-321.	1.5	10
56	Morphological and optical comparison of the Si doped GaN thin film deposited onto the transparent substrates. Materials Research Express, 2016, 3, 045012.	1.6	9
57	Investigation of the surface free energy of the ITO thin films deposited under different working pressure. AIP Conference Proceedings, 2016, , .	0.4	1
58	Influence of oxygen partial pressure on the metastable copper oxide thin films. Modern Physics Letters B, 2016, 30, 1530012.	1.9	1
59	Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc. AlP Conference Proceedings, 2016, , .	0.4	1
60	Some physical properties of Co-doped GaAs thin films grown by thermionic vacuum arc. AIP Conference Proceedings, 2016, , .	0.4	1
61	The influence of voltage applied between the electrodes on optical and morphological properties of the InGaN thin films grown by thermionic vacuum arc. Scanning, 2016, 38, 14-20.	1.5	21
62	Comparisons of surface and optical properties of the heavily carbon-doped GaN nanocrystalline films deposited by thermionic vacuum arc method. Vacuum, 2016, 133, 38-42.	3.5	6
63	Surface and optical properties of indium tin oxide layer deposition by RF magnetron sputtering in argon atmosphere. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10
64	Investigation of the thickness effect to impedance analysis results AlGaN acoustic sensor. AIP Conference Proceedings, 2016, , .	0.4	1
65	Morphology, composition, structure and optical properties of CuO/Cu2O thin films prepared by RF sputtering method. Vacuum, 2016, 131, 142-146.	3.5	45
66	Surface, Nanomechanical, and Optical Properties of Mo-Doped GeGaAs Thin Film Deposited by Thermionic Vacuum Arc. Journal of Electronic Materials, 2016, 45, 255-261.	2.2	1
67	Optical and surface properties of the in doped GaAs layer deposition using thermionic vacuum arc method. Scanning, 2016, 38, 297-302.	1.5	2
68	Optical, morphological properties and surface energy of the transparent Li ₄ Ti ₅ O ₁₂ (LTO) thin film as anode material for secondary type batteries. Journal Physics D: Applied Physics, 2016, 49, 105303.	2.8	24
69	Optical, morphological and mechanical properties of an Al–Al2O3 nanocomposite thin film grown by thermionic vacuum arc. Optik, 2016, 127, 3383-3387.	2.9	7
70	Optical, structural, morphological and compositional characterization of a Co-doped GaAs semiconducting thin film produced by thermionic vacuum arc. Journal of Alloys and Compounds, 2016, 663, 829-833.	5.5	15
71	Heavily carbon doped GaAs nanocrystalline thin film deposited by thermionic vacuum arc method. Journal of Alloys and Compounds, 2016, 657, 711-716.	5.5	9
72	The Effects of Boron Alloying on the Structural and Optical Properties of GaAs Deposited by a Thermionic Vacuum Arc Method. Materials Focus, 2016, 5, 1-4.	0.4	5

#	Article	IF	CITATIONS
73	A study on optical, morphological and mechanical properties of Al <sub align="right">2O<sub align="right">3 ultra-thin films deposited by RF reactive magnetron sputtering. International Journal of Surface Science and Engineering, 2015, 9, 415.</sub </sub>	0.4	4
74	Direct and fast growth of a SI:GAAS thin film by means of thermionic vacuum arc (TVA). , 2015, , .		1
75	Nanostructured vanadium carbide thin films produced by RF magnetron sputtering. Scanning, 2015, 37, 197-203.	1.5	5
76	Mo doped GaN thin film growth using Thermionic Vacuum Arc (TVA). , 2015, , .		1
77	Characterization of a fast grown GaAs:Sn thin film by thermionic vacuum arc. Journal of Materials Science: Materials in Electronics, 2015, 26, 8983-8987.	2.2	5
78	Direct and fast growth of GaAs thin films on glass and polyethylene terephthalate substrates using a thermionic vacuum arc. Journal of Materials Science: Materials in Electronics, 2015, 26, 2210-2214.	2.2	16
79	Some physical properties of a Si-doped nano-crystalline GaAs thin film grown by thermionic vacuum arc. Vacuum, 2015, 119, 228-232.	3.5	18
80	AlCaAs film growth using thermionic vacuum arc (TVA) and determination of its physical properties. European Physical Journal Plus, 2015, 130, 1.	2.6	18
81	Deposition of a Mo doped GaN thin film on glass substrate by thermionic vacuum arc (TVA). Journal of Materials Science: Materials in Electronics, 2015, 26, 5060-5064.	2.2	19
82	Optical and surface properties of LiFePO4 thin films prepared by RF magnetron sputtering. European Physical Journal D, 2015, 69, 1.	1.3	9
83	GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA). Materials Chemistry and Physics, 2015, 159, 1-5.	4.0	29
84	Solid state battery manufacturing with thermionic vacuum ARC and RF sputtering. , 2015, , .		1
85	Investigation on the morphology and surface free energy of the AlGaN thin film. Journal of Alloys and Compounds, 2015, 653, 162-167.	5.5	21
86	Some Physical Properties of the SiGe Thin Film Coatings by Thermionic Vacuum Arc (TVA). Journal of Nanoelectronics and Optoelectronics, 2015, 10, 56-60.	0.5	14
87	Influence of RF Power on Optical and Surface Properties of the ZnO Thin Films Deposited by Magnetron Sputtering. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 183-186.	0.5	6
88	Characterization of BaF ₂ Thin Film Deposited by Thermionic Vacuum Arc. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 301-303.	0.5	3
89	Optical, Structural and Morphological Characterization of a Zn-Doped GaAs Semiconducting Thin Film Produced by Thermionic Vacuum Arc. Materials Focus, 2015, 4, 397-402.	0.4	3
90	Mechanical properties of deposited carbon thin films on sapphire substrates using atomic force microscopy (AFM). Ceramics International, 2014, 40, 10159-10162.	4.8	12

#	Article	IF	CITATIONS
91	ZnO thin film synthesis by reactive radio frequency magnetron sputtering. Applied Surface Science, 2014, 318, 2-5.	6.1	46
92	A New Deposition Technique Using Reactive Thermionic Vacuum Arc for ZnO Thin Film Production. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 437-441.	0.5	11
93	Comparison of the LaF ₃ Thin Films Deposited on Glass and Polyethylene Terephthalate. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 546-548.	0.5	3
94	Electronic transport properties of liquid Na1â^'xKx alloys. Journal of Molecular Liquids, 2013, 186, 85-89.	4.9	7
95	Optical characterization of deposited ITO thin films on glass and PET substrates. Applied Surface Science, 2013, 276, 641-645.	6.1	32
96	Deposition of Al doped ZnO thin films on the different substrates with radio frequency magnetron sputtering. Journal of Non-Crystalline Solids, 2013, 359, 69-72.	3.1	16
97	The structural, optical and morphological properties of CaF2 thin films by using Thermionic Vacuum Arc (TVA). Materials Letters, 2013, 91, 175-178.	2.6	23
98	ULTRA THIN CARBON FILMS DEPOSITED ON SrTiO3 SUBSTRATES BY THERMIONIC VACUUM ARC. Nano, 2013, 08, 1350028.	1.0	8
99	Thermal treatment effect on the optical properties of ZrO2 thin films deposited by thermionic vacuum arc. Vacuum, 2012, 86, 1930-1933.	3.5	35
100	Structure and Electrical Resistivities of Liquid Al and Ga Metals and Their Binary Alloys. International Journal of Thermophysics, 2012, 33, 831-842.	2.1	4
101	Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA). Optics Communications, 2012, 285, 2373-2376.	2.1	32
102	A study for structure and inter-diffusion coefficient of liquid K1â^'xCsxmetal alloys. Physics and Chemistry of Liquids, 2011, 49, 801-810.	1.2	4
103	Diamond-like carbon coated on polyethylene terephthalate by Thermionic Vacuum Arc. Journal of Plastic Film and Sheeting, 2011, 27, 127-137.	2.2	19
104	Investigation of surface properties of liquid transition metals: Surface tension and surface entropy. Applied Surface Science, 2010, 257, 261-265.	6.1	17
105	Antireflective Coating on Polyethylene Terephthalate by Thermionic Vacuum Arc. Journal of Plastic Film and Sheeting, 2010, 26, 259-270.	2.2	11
106	Structure and electrical resistivity of liquid In–Sn alloy. Computational Materials Science, 2010, 48, 466-470.	3.0	5
107	Investigation of atomic transport and surface properties of liquid transition metals using scaling laws. Journal of Molecular Liquids, 2009, 150, 81-85.	4.9	23
108	Some physical properties of ZnO thin films prepared by RF sputtering technique. International Journal of Hydrogen Energy, 2009, 34, 5218-5222.	7.1	67

#	Article	IF	CITATIONS
109	Atomic transport properties of liquid alkaline earth metals: a comparison of scaling laws proposed for diffusion and viscosity. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 285-294.	2.0	13
110	A comparative study of electrical resistivity of liquid alkali metals. Computational Materials Science, 2006, 37, 618-623.	3.0	12
111	A comparative study of the atomic transport properties of liquid alkaline metals using scaling laws. Fluid Phase Equilibria, 2006, 249, 159-164.	2.5	14
112	The Effect of Annealing Process on Some Physical Properties of GaN Thin Films with Gr Doping. ECS Journal of Solid State Science and Technology, 0, , .	1.8	0
113	Investigation of pH measurement of drinking water by disposable, high accuracy, and semi-transparent BN/Ag nanocomposite thin film sensors. Inorganic and Nano-Metal Chemistry, 0, , 1-6.	1.6	0