
Zofia Mazerska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of glucuronidation in drug resistance. , 2016, 159, 35-55.		75
2	The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchemical Journal, 2019, 146, 393-406.	2.3	67
3	Molecular mechanism of the enzymatic oxidation investigated for imidazoacridinone antitumor drug, C-1311. Biochemical Pharmacology, 2003, 66, 1727-1736.	2.0	38
4	Electroanalytical and spectroscopic procedures for examination of interactions between double stranded DNA and intercalating drugs. Analytical and Bioanalytical Chemistry, 2007, 389, 1931-1940.	1.9	38
5	State of the art and prospects of methods for determination of lipophilicity of chemical compounds. TrAC - Trends in Analytical Chemistry, 2019, 113, 54-73.	5.8	37
6	Progress in Targeting Tumor Cells by Using Drug-Magnetic Nanoparticles Conjugate. Biomacromolecules, 2013, 14, 828-833.	2.6	36
7	Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicology in Vitro, 2016, 33, 45-53.	1.1	36
8	Products of Metabolic Activation of the Antitumor Drug Ledakrin (Nitracrine) in Vitro. Chemical Research in Toxicology, 2001, 14, 1-10.	1.7	33
9	Enzymatic activation of a new antitumour drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed after its intercalation into DNA. Biochemical Pharmacology, 2001, 61, 685-694.	2.0	32
10	New Unsymmetrical Bisacridine Derivatives Noncovalently Attached to Quaternary Quantum Dots Improve Cancer Therapy by Enhancing Cytotoxicity toward Cancer Cells and Protecting Normal Cells. ACS Applied Materials & Interfaces, 2020, 12, 17276-17289.	4.0	29
11	The Imidazoacridinone Antitumor Drug, C-1311, Is Metabolized by Flavin Monooxygenases but Not by Cytochrome P450s. Drug Metabolism and Disposition, 2011, 39, 1423-1432.	1.7	22
12	Pregnane X receptor dependent up-regulation of CYP2C9 and CYP3A4 in tumor cells by antitumor acridine agents, C-1748 and C-1305, selectively diminished under hypoxia. Biochemical Pharmacology, 2013, 86, 231-241.	2.0	21
13	Revision of Biological Methods for Determination of EDC Presence and Their Endocrine Potential. Critical Reviews in Analytical Chemistry, 2015, 45, 191-200.	1.8	21
14	Role of Human UDP-Glucuronosyltransferases in the Biotransformation of the Triazoloacridinone and Imidazoacridinone Antitumor Agents C-1305 and C-1311: Highly Selective Substrates for UGT1A10. Drug Metabolism and Disposition, 2012, 40, 1736-1743.	1.7	20
15	Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells. Xenobiotica, 2011, 41, 1044-1055.	0.5	19
16	Design, synthesis and high antitumor potential of new unsymmetrical bisacridine derivatives towards human solid tumors, specifically pancreatic cancers and their unique ability to stabilize DNA G-quadruplexes. European Journal of Medicinal Chemistry, 2020, 204, 112599.	2.6	19
17	Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver Acta Biochimica Polonica, 2007, 54, 831-838.	0.3	19
18	Relationship between volatile organohalogen compounds in drinking water and human urine in Poland. Chemosphere, 2003, 53, 899-909.	4.2	16

ZOFIA MAZERSKA

#	Article	IF	CITATIONS
19	Binary Mixtures of Selected Bisphenols in the Environment: Their Toxicity in Relationship to Individual Constituents. Molecules, 2018, 23, 3226.	1.7	16
20	C-1311. Drugs of the Future, 1998, 23, 702.	0.0	16
21	Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag–In–Zn–S as a biological entity for tumor recognition. Nanoscale, 2018, 10, 1286-1296.	2.8	15
22	Metabolic Transformation of Antitumor Acridinone C-1305 but Not C-1311 via Selective Cellular Expression of UGT1A10 Increases Cytotoxic Response: Implications for Clinical Use. Drug Metabolism and Disposition, 2013, 41, 414-421.	1.7	14
23	Volatile organohalogen compounds in human urine: The effect of environmental exposure. Chemosphere, 2006, 62, 626-640.	4.2	13
24	Interactions of Dissolved dsDNA with Intercalating Drug by Anodic Voltammetry and Spectroscopy. Influence of pH. Electroanalysis, 2009, 21, 52-60.	1.5	13
25	Modulation of CYP3A4 activity and induction of apoptosis, necrosis and senescence by the antiâ€ŧumour imidazoacridinone Câ€1311 in human hepatoma cells. Cell Biology International, 2013, 37, 109-120.	1.4	13
26	Electrochemical oxidation of antitumor imidazoacridinone derivatives and the reference 2-hydroxyacridinone. Journal of Electroanalytical Chemistry, 1997, 427, 71-78.	1.9	12
27	Synthesis and cytotoxic activity of aziridinyl-1,4-naphthoquinones and naphthazarins. European Journal of Medicinal Chemistry, 1988, 23, 91-96.	2.6	11
28	Influence of temperature and interactions with ligands on dissociation of dsDNA and ligand–dsDNA complexes of various types of binding. An electrochemical study. Physical Chemistry Chemical Physics, 2012, 14, 3408.	1.3	11
29	Electroanalytical and acid–base properties of imidazoacridinone, an antitumor drug (C-1311). Analytica Chimica Acta, 1999, 379, 209-215.	2.6	10
30	Diminished toxicity of C-1748, 4-methyl-9-hydroxyethylamino-1-nitroacridine, compared with its demethyl analog, C-857, corresponds to its resistance to metabolism in HepG2 cells. Biochemical Pharmacology, 2012, 84, 30-42.	2.0	10
31	Electrochemical simulation of metabolism for antitumor-active imidazoacridinone C-1311 and in silico prediction of drug metabolic reactions. Journal of Pharmaceutical and Biomedical Analysis, 2019, 169, 269-278.	1.4	10
32	Electrochemical formation of the adduct between antitumor agent C-1311 and DNA nucleoside dG. Electrochemistry Communications, 2003, 5, 770-775.	2.3	9
33	Electrooxidation of dissolved dsDNA backed by in situ UV–Vis spectroscopy. Bioelectrochemistry, 2007, 70, 440-445.	2.4	9
34	CYP3A4â€dependent cellular response does not relate to CYP3A4â€catalysed metabolites of Câ€1748 and Câ€ acridine antitumor agents in HepG2 cells. Cell Biology International, 2014, 38, 1291-1303.	1305 1.4	9
35	Novel Resveratrol-Based Substrates for Human Hepatic, Renal, and Intestinal UDP-Glucuronosyltransferases. Chemical Research in Toxicology, 2014, 27, 536-545.	1.7	9
36	Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry. Xenobiotica, 2019, 49, 922-934.	0.5	9

ZOFIA MAZERSKA

#	Article	IF	CITATIONS
37	The relevance of enzymatic oxidation by horseradish peroxidase to antitumour potency of imidazoacridinone derivatives. Chemico-Biological Interactions, 1998, 115, 1-22.	1.7	8
38	The products of electro- and photochemical oxidation of 2-hydroxyacridinone, the reference compound of antitumor imidazoacridinone derivatives. Journal of Electroanalytical Chemistry, 2002, 521, 144-154.	1.9	7
39	CYP3A4 overexpression enhances apoptosis induced by anticancer agent imidazoacridinone C-1311, but does not change the metabolism of C-1311 in CHO cells. Acta Pharmacologica Sinica, 2014, 35, 98-112.	2.8	7
40	Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions. Journal of Pharmaceutical Analysis, 2021, 11, 791-798.	2.4	7
41	The overexpression of CPR and P450 3A4 in pancreatic cancer cells changes the metabolic profile and increases the cytotoxicity and pro-apoptotic activity of acridine antitumor agent, C-1748. Biochemical Pharmacology, 2017, 142, 21-38.	2.0	7
42	Mechanism-based inactivation of human cytochrome P450 1A2 and 3A4 isoenzymes by anti-tumor triazoloacridinone C-1305. Xenobiotica, 2016, 46, 1056-1065.	0.5	6
43	lmidazoacridinone antitumor agent C-1311 as a selective mechanism-based inactivator of human cytochrome P450 1A2 and 3A4 isoenzymes. Pharmacological Reports, 2016, 68, 663-670.	1.5	6
44	Enhanced Activity of P4503A4 and UGT1A10 Induced by Acridinone Derivatives C-1305 and C-1311 in MCF-7 and HCT116 Cancer Cells: Consequences for the Drugs' Cytotoxicity, Metabolism and Cellular Response. International Journal of Molecular Sciences, 2020, 21, 3954.	1.8	6
45	Electrochemical and in silico approaches for liver metabolic oxidation of antitumor-active triazoloacridinone C-1305. Journal of Pharmaceutical Analysis, 2020, 10, 376-384.	2.4	6
46	Metabolic Profiles of New Unsymmetrical Bisacridine Antitumor Agents in Electrochemical and Enzymatic Noncellular Systems and in Tumor Cells. Pharmaceuticals, 2021, 14, 317.	1.7	6
47	Similarity between enzymatic and electrochemical oxidation of 2-hydroxyacridinone, the reference compound of antitumor imidazoacridinones Acta Biochimica Polonica, 2003, 50, 515-525.	0.3	6
48	New generation of analytical tests based on the assessment of enzymatic and nuclear receptor activity changes induced by environmental pollutants. TrAC - Trends in Analytical Chemistry, 2015, 74, 109-119.	5.8	5
49	Drug-drug interaction potential of antitumor acridine agent C-1748: The substrate of UDP-glucuronosyltransferases 2B7, 2B17 and the inhibitor of 1A9 and 2B7. Pharmacological Reports, 2018, 70, 972-980.	1.5	5
50	Anticancer Imidazoacridinone C-1311 is Effective in Androgen-Dependent and Androgen-Independent Prostate Cancer Cells. Biomedicines, 2020, 8, 292.	1.4	5
51	Acid–Base Equilibrium and Self-Association in Relation to High Antitumor Activity of Selected Unsymmetrical Bisacridines Established by Extensive Chemometric Analysis. Molecules, 2022, 27, 3995.	1.7	5
52	Endocrine Disrupting Compounds $\hat{a} \in \mathbb{C}$ Problems and Challenges. , 2015, , .		4
53	Analysis and Bioanalysis: an Effective Tool for Data Collection of Environmental Conditions and Processes. Polish Journal of Environmental Studies, 2016, 25, 45-53.	0.6	4
54	Spectroelectroanalytical Properties of Antitumor Agent C-1311. Electroanalysis, 2007, 19, 214-219.	1.5	3

ZOFIA MAZERSKA

#	Article	IF	CITATIONS
55	Modulation of UDP-glucuronidation by acridinone antitumor agents C-1305 and C-1311 in HepG2 and HT29 cell lines, despite slight impact in noncellular systems. Pharmacological Reports, 2018, 70, 470-475.	1.5	3
56	Electrochemical simulation of metabolic reduction and conjugation reactions of unsymmetrical bisacridine antitumor agents, C-2028 and C-2053. Journal of Pharmaceutical and Biomedical Analysis, 2021, 197, 113970.	1.4	3
57	Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver. Acta Biochimica Polonica, 2007, 54, 831-8.	0.3	3
58	The synthesis and antitumor activity of N-glycosyl derivatives of daunorubicin Journal of Antibiotics, 1984, 37, 1213-1216.	1.0	1
59	Chiral Pyrazolo[4,3-e][1,2,4]triazine Sulfonamides—Their Biological Activity, Lipophilicity, Protein Affinity, and Metabolic Transformations. Applied Sciences (Switzerland), 2021, 11, 2660.	1.3	1
60	65 Phase II drug metabolism UGT1A enzyme affects cellular response of colon cancer cells to antitumor triazoloacridinone C-1305 treatment. European Journal of Cancer, 2014, 50, 26.	1.3	0
61	67 Cytotoxic response as a result of the cross-talk between UGT mediated metabolism and modulation of UGT activity by C-1311 and C-1305 acridinone antitumor agents in selected solid tumor cell lines. European Journal of Cancer, 2014, 50, 27.	1.3	0
62	Detoxification of the tricyclic antidepressant opipramol and its analog – IS-noh by UGT enzymes before and after activation by phase I enzymes in rat liver microsomes. Chemical Papers, 2021, 75, 4973.	1.0	0
63	Glucuronides of antitumor agents Câ€1311 and Câ€1305 modulate cytotoxicity in cancer cells. FASEB Journal, 2012, 26, 966.2.	0.2	Ο