
Laura Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236190/publications.pdf Version: 2024-02-01

Ι ΔΙΙΡΑ ΗΔΡΤΜΑΝΝ

#	Article	IF	CITATIONS
1	Precision Polymers: Monodisperse, Monomerâ€Sequenceâ€Defined Segments to Target Future Demands of Polymers in Medicine. Advanced Materials, 2009, 21, 3425-3431.	21.0	148
2	Solid-Phase Supported Polymer Synthesis of Sequence-Defined, Multifunctional Poly(amidoamines). Biomacromolecules, 2006, 7, 1239-1244.	5.4	134
3	Sequence-Defined Glycopolymer Segments Presenting Mannose: Synthesis and Lectin Binding Affinity. Biomacromolecules, 2012, 13, 1845-1852.	5.4	132
4	Quantitative mapping of glycoprotein microâ€heterogeneity and macroâ€heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. Journal of Mass Spectrometry, 2013, 48, 627-639.	1.6	130
5	Carbohydrate-Lectin Recognition of Sequence-Defined Heteromultivalent Glycooligomers. Journal of the American Chemical Society, 2014, 136, 2008-2016.	13.7	114
6	Nanophase Separated Amphiphilic Conetwork Coatings and Membranes. Macromolecules, 2005, 38, 2431-2438.	4.8	104
7	Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. Journal of Controlled Release, 2005, 103, 355-367.	9.9	102
8	Tailorâ€Made Poly(amidoamine)s for Controlled Complexation and Condensation of DNA. Chemistry - A European Journal, 2008, 14, 2025-2033.	3.3	97
9	Morphology of Photopolymerized End-Linked Poly(ethylene glycol) Hydrogels by Small-Angle X-ray Scattering. Macromolecules, 2010, 43, 6861-6870.	4.8	87
10	Metal-Mediated Molecular Self-Healing in Histidine-Rich Mussel Peptides. Biomacromolecules, 2014, 15, 1644-1652.	5.4	75
11	A novel contact model for AFM indentation experiments on soft spherical cell-like particles. Soft Matter, 2014, 10, 6732.	2.7	71
12	Synthesis of Carbohydrateâ€Functionalised Sequenceâ€Defined Oligo(amidoamine)s by Photochemical ThiolEne Coupling in a Continuous Flow Reactor. Chemistry - A European Journal, 2013, 19, 3090-3098.	3.3	70
13	Polymers for Control Freaks: Sequenceâ€Defined Poly(amidoamine)s and Their Biomedical Applications. Macromolecular Chemistry and Physics, 2011, 212, 8-13.	2.2	69
14	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
15	Next Generation of Zinc Bisguanidine Polymerization Catalysts towards Highly Crystalline, Biodegradable Polyesters. Angewandte Chemie - International Edition, 2020, 59, 21778-21784.	13.8	63
16	Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nature Communications, 2016, 7, 11224.	12.8	60
17	Mesoporous Protein Particles Through Colloidal CaCO ₃ Templates. Advanced Functional Materials, 2013, 23, 116-123.	14.9	59
18	Electrochemical displacement sensor based on ferrocene boronic acid tracer and immobilized glycan for saccharide binding proteins and E. coli. Biosensors and Bioelectronics, 2014, 58, 1-8.	10.1	58

LAURA HARTMANN

#	Article	IF	CITATIONS
19	Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. Journal of the American Chemical Society, 2020, 142, 5252-5265.	13.7	56
20	Sequence-Controlled Glycopolymers via Step-Growth Polymerization of Precision Glycomacromolecules for Lectin Receptor Clustering. Biomacromolecules, 2017, 18, 787-796.	5.4	54
21	Solid-Phase Synthesis of Asymmetrically Branched Sequence-Defined Poly/Oligo(amidoamines). Journal of Organic Chemistry, 2012, 77, 4226-4234.	3.2	46
22	Synthesis of Porous PEG Microgels Using CaCO ₃ Microspheres as Hard Templates. Macromolecular Rapid Communications, 2012, 33, 1049-1054.	3.9	46
23	Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa. Organic and Biomolecular Chemistry, 2016, 14, 7933-7948.	2.8	45
24	Magnetic Porous Sugar-Functionalized PEG Microgels for Efficient Isolation and Removal of Bacteria from Solution. Biomacromolecules, 2013, 14, 1927-1935.	5.4	44
25	CO2-switchable oligoamine patches based on amino acids and their use to build polyelectrolyte containers with intelligent gating. Soft Matter, 2008, 4, 534.	2.7	41
26	Mechanical Carbohydrate Sensors Based on Soft Hydrogel Particles. Angewandte Chemie - International Edition, 2013, 52, 6084-6087.	13.8	41
27	Precise redox-sensitive cleavage sites for improved bioactivity of siRNA lipopolyplexes. Nanoscale, 2016, 8, 18098-18104.	5.6	40
28	Sequence Positioning of Disulfide Linkages to Program the Degradation of Monodisperse Poly(amidoamines). Macromolecules, 2007, 40, 7771-7776.	4.8	39
29	Toward the development of an artificial cornea: Improved stability of interpenetrating polymer networks. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 8-17.	3.4	39
30	Recent Developments in Solidâ€₽hase Strategies towards Synthetic, Sequenceâ€Defined Macromolecules. Chemistry - an Asian Journal, 2018, 13, 3611-3622.	3.3	37
31	Synthesis and functionalization of poly(ethylene glycol) microparticles as soft colloidal probes for adhesion energy measurements. Soft Matter, 2012, 8, 1664-1672.	2.7	35
32	Biodegradable poly(amidoamine)s with uniform degradation fragments via sequence-controlled macromonomers. Polymer Chemistry, 2016, 7, 7086-7093.	3.9	34
33	Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea. Journal of Biomedical Materials Research - Part A, 2015, 103, 3157-3165.	4.0	33
34	Precise Positioning of Chiral Building Blocks in Monodisperse, Sequenceâ€Đefined Polyamides. Macromolecular Rapid Communications, 2011, 32, 197-202.	3.9	31
35	Probing multivalency in ligand–receptor-mediated adhesion of soft, biomimetic interfaces. Beilstein Journal of Organic Chemistry, 2015, 11, 720-729.	2.2	30
36	Linear Precision Glycomacromolecules with Varying Interligand Spacing and Linker Functionalities Binding to Concanavalin A and the Bacterial Lectin FimH. Macromolecular Bioscience, 2017, 17, 1700198.	4.1	30

LAURA HARTMANN

#	Article	IF	CITATIONS
37	Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding. Polymers, 2017, 9, 716.	4.5	29
38	Elastic Modulus Dependence on the Specific Adhesion of Hydrogels. Advanced Functional Materials, 2017, 27, 1702040.	14.9	26
39	Photoswitchable precision glycooligomers and their lectin binding. Beilstein Journal of Organic Chemistry, 2014, 10, 1603-1612.	2.2	25
40	Toward Orthogonal Preparation of Sequence-Defined Monodisperse Heteromultivalent Glycomacromolecules on Solid Support Using Staudinger Ligation and Copper-Catalyzed Click Reactions. Journal of Organic Chemistry, 2017, 82, 9400-9409.	3.2	25
41	Fucose-Functionalized Precision Glycomacromolecules Targeting Human Norovirus Capsid Protein. Biomacromolecules, 2018, 19, 3714-3724.	5.4	25
42	Specific Adhesion of Carbohydrate Hydrogel Particles in Competition with Multivalent Inhibitors Evaluated by AFM. Langmuir, 2014, 30, 6142-6150.	3.5	23
43	Splitâ€andâ€Combine Approach Towards Branched Precision Glycomacromolecules and Their Lectin Binding Behavior. Chemistry - A European Journal, 2018, 24, 1619-1630.	3.3	23
44	Sequenceâ€Defined Heteromultivalent Precision Glycomacromolecules Bearing Sulfonated/Sulfated Nonglycosidic Moieties Preferentially Bind Galectinâ€3 and Delay Wound Healing of a Galectinâ€3 Positive Tumor Cell Line in an In Vitro Wound Scratch Assay. Macromolecular Bioscience, 2020, 20, e2000163.	4.1	22
45	Synthesis of homo- and heteromultivalent carbohydrate-functionalized oligo(amidoamines) using novel glyco-building blocks. Beilstein Journal of Organic Chemistry, 2013, 9, 2395-2403.	2.2	21
46	Multivalent Binding of Precision Glycooligomers on Soft Glycocalyx Mimicking Hydrogels. Biomacromolecules, 2018, 19, 3479-3488.	5.4	21
47	Sequenceâ€Defined Introduction of Hydrophobic Motifs and Effects in Lectin Binding of Precision Glycomacromolecules. Macromolecular Bioscience, 2019, 19, 1800425.	4.1	21
48	Amphiphilic Cationic \hat{l}^2 3R3-Peptides: Membrane Active Peptidomimetics and Their Potential as Antimicrobial Agents. Biomacromolecules, 2014, 15, 1687-1695.	5.4	20
49	Asymmetrically Branched Precision Glycooligomers Targeting Langerin. Biomacromolecules, 2019, 20, 4088-4095.	5.4	19
50	Synthesis of Porphyrin and Bacteriochlorin Glycoconjugates through CuAAC Reaction Tuning. European Journal of Organic Chemistry, 2019, 2019, 6496-6503.	2.4	19
51	Sequence-Controlled High Molecular Weight Glyco(oligoamide)–PEG Multiblock Copolymers as Ligands and Inhibitors in Lectin Binding. Macromolecules, 2018, 51, 5608-5619.	4.8	18
52	Effects of linker and liposome anchoring on lactose-functionalized glycomacromolecules as multivalent ligands for binding galectin-3. RSC Advances, 2019, 9, 23484-23497.	3.6	17
53	Multivalent Interactions of Polyamide Based Sequenceâ€Controlled Glycomacromolecules with Concanavalin A. Macromolecular Bioscience, 2019, 19, e1900033.	4.1	17
54	Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequenceâ€Đefined Macromolecules. Chemistry - A European Journal, 2021, 27, 1451-1464.	3.3	17

LAURA HARTMANN

#	Article	IF	CITATIONS
55	Synthesis of Brushâ€Like Glycopolymers with Monodisperse, Sequenceâ€Defined Side Chains and Their Interactions with Plant and Animal Lectins. Macromolecular Rapid Communications, 2020, 41, e1900459.	3.9	16
56	Sequence-defined positioning of amine and amide residues to control catechol driven wet adhesion. Chemical Science, 2020, 11, 9919-9924.	7.4	16
57	Monodisperse Sequenceâ€Controlled αâ€lâ€Fucosylated Glycooligomers and Their Multivalent Inhibitory Effects on LecB. Macromolecular Bioscience, 2018, 18, 1800337.	4.1	15
58	Quantification of protein–materials interaction by soft colloidal probe spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 3014-3018.	2.8	14
59	Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. Biomacromolecules, 2016, 17, 1959-1968.	5.4	14
60	Heteromultivalent Glycooligomers as Mimetics of Blood Group Antigens. Chemistry - A European Journal, 2019, 25, 3301-3309.	3.3	14
61	Exploiting Oligo(amido amine) Backbones for the Multivalent Presentation of Coiled-Coil Peptides. Biomacromolecules, 2015, 16, 2394-2402.	5.4	13
62	Highly Fluorescent Merocyanine and Cyanine PMMA Copolymers. Macromolecular Rapid Communications, 2018, 39, e1800277.	3.9	13
63	Reloadable antimicrobial coatings based on amphiphilic silicone networks. Surface Coatings International Part B: Coatings Transactions, 2005, 88, 49-53.	0.3	12
64	β3R3-Peptides: design and synthesis of novel peptidomimetics and their self-assembling properties at the air–water interface. Organic and Biomolecular Chemistry, 2013, 11, 5399.	2.8	11
65	Combinatorial Screening for Specific Drug Solubilizers with Switchable Release Profiles. Macromolecular Bioscience, 2015, 15, 82-89.	4.1	11
66	Cu Elimination from Cu-Coordinating Macromolecules. ACS Macro Letters, 2017, 6, 399-403.	4.8	11
67	Fast curing of polyhydroxyurethanes <i>via</i> ring opening polyaddition of low viscosity cyclic carbonates and amines. Polymer Chemistry, 2020, 11, 6964-6970.	3.9	11
68	Divalent Sialylated Precision Glycooligomers Binding to Polyomaviruses and the Effect of Different Linkers. Macromolecular Bioscience, 2019, 19, 1800426.	4.1	10
69	Progress, challenges and future directions of heterocycles as building blocks in iterative methodologies towards sequence-defined oligomers and polymers. Polymer Chemistry, 2021, 12, 4439-4450.	3.9	9
70	Catechol-functionalized sequence-defined glycomacromolecules as covalent inhibitors of bacterial adhesion. Polymer Chemistry, 2020, 11, 6091-6096.	3.9	8
71	Effect of PEGylation on Receptor Anchoring and Steric Shielding at Interfaces: An Adhesion and Surface Plasmon Resonance Study with Precision Polymers. Biomacromolecules, 2020, 21, 4850-4856.	5.4	7
72	Lewis Base–BrÃ,nsted Acid–Enzyme Catalysis in Enantioselective Multistep Oneâ€Pot Syntheses. Angewandte Chemie - International Edition, 2021, 60, 16700-16706.	13.8	7

Laura Hartmann

#	Article	IF	CITATIONS
73	Synthesis of highly controlled carbohydrate–polymer based hybrid structures by combining heparin fragments and sialic acid derivatives, and solid phase polymer synthesis. Chemical Communications, 2018, 54, 10487-10490.	4.1	6
74	Recovery, Purification, and Reusability of Building Blocks for Solid Phase Synthesis. Macromolecular Rapid Communications, 2020, 41, 1900473.	3.9	6
75	Thermally Controlled Acceleration of Epoxy Resin Curing through Polymer-Bound Imidazole Derivatives with High Latency. ACS Applied Polymer Materials, 2022, 4, 1150-1158.	4.4	6
76	Recent Advances in Solid Phase Polymer Synthesis: Polyamides from Tailor-Made Building Blocks. ACS Symposium Series, 2014, , 85-101.	0.5	5
77	Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders. International Archives of Occupational and Environmental Health, 2015, 88, 913-923.	2.3	5
78	Self-assembly of cholesterol tethered within hydrogel networks. Polymer, 2016, 84, 371-382.	3.8	5
79	Exploring Cyclic Sulfamidate Building Blocks for the Synthesis of Sequenceâ€Đefined Macromolecules. Macromolecular Rapid Communications, 2021, 42, e2100193.	3.9	5
80	Modeling of Multivalent Ligand-Receptor Binding Measured by kinITC. Computation, 2019, 7, 46.	2.0	4
81	PEGylated sequence-controlled macromolecules using supramolecular binding to target the Taspase1/Importin α interaction. Chemical Communications, 2021, 57, 3091-3094.	4.1	4
82	Enabling Directional Sequence ontrol via Stepâ€Growth Polymerization of Heterofunctionalized Precision Macromonomers. Macromolecular Rapid Communications, 2019, 40, 1800735.	3.9	3
83	Synthesis and self-assembly of amphiphilic precision glycomacromolecules. Polymer Chemistry, 2021, 12, 4795-4802.	3.9	2
84	Take your Positions and Shine: Effects of Positioning Aggregationâ€Induced Emission Luminophores within Sequenceâ€Defined Macromolecules. Chemistry - A European Journal, 2021, 27, 10186-10192.	3.3	2
85	Young Talents in Polymer Science. Macromolecular Chemistry and Physics, 2016, 217, 124-125.	2.2	1
86	Preparation of multivalent glycan micro- and nano-arrays: general discussion. Faraday Discussions, 2019, 219, 128-137.	3.2	1
87	Polymers for the Future. Macromolecular Chemistry and Physics, 2020, 221, 2000077.	2.2	1
88	Ammonium Carbamate Functionalization of Microgels for pHâ€Sensitive Loading and Release of Anionic and Cationic Molecules. Macromolecular Chemistry and Physics, 2014, 215, 90-95.	2.2	0
89	Rising Stars in Polymer Science. Macromolecular Chemistry and Physics, 2016, 217, 317-318.	2.2	0
90	Multidimensional micro- and nano-printing technologies: general discussion. Faraday Discussions, 2019, 219, 73-76.	3.2	0

#	Article	IF	CITATIONS
91	Glycan interactions on glycocalyx mimetic surfaces: general discussion. Faraday Discussions, 2019, 219, 183-188.	3.2	Ο
92	New directions in surface functionalization and characterization: general discussion. Faraday Discussions, 2019, 219, 252-261.	3.2	0
93	Chapter 2. Glycopolymers. RSC Polymer Chemistry Series, 2016, , 31-65.	0.2	Ο