Bin Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235996/publications.pdf

Version: 2024-02-01

53794 95266 6,304 162 45 68 citations h-index g-index papers 169 169 169 4235 all docs citing authors docs citations times ranked

#	Article	IF	Citations
1	An Overview of Wearable and Implantable Electrochemical Glucose Sensors. Electroanalysis, 2022, 34, 237-245.	2.9	37
2	An Overview of Antifouling Strategies for Electrochemical Analysis. Electroanalysis, 2022, 34, 966-975.	2.9	23
3	Application of Nanomaterials in Isothermal Nucleic Acid Amplification. Small, 2022, 18, e2102711.	10.0	25
4	Vertical silica nanochannels supported by nanocarbon composite for simultaneous detection of serotonin and melatonin in biological fluids. Sensors and Actuators B: Chemical, 2022, 353, 131101.	7.8	47
5	Deciphering electrochemiluminescence generation from luminol and hydrogen peroxide by imaging light emitting layer. Fundamental Research, 2022, 2, 682-687.	3.3	13
6	Enhanced electrochemiluminescence at silica nanochannel membrane studied by scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2022, 904, 115943.	3.8	4
7	The Effect of Ionic Strength on the Electrochemiluminescence Generation by Tris(2,2′-bipyridyl)ruthenium(II)/Tri-n-propylamine. Chemical Research in Chinese Universities, 2022, 38, 816-822.	2.6	3
8	Quantum Efficiency of Electrochemiluminescence Generation by Tris(2,2'â€bipyridine)ruthenium(II) and Triâ€ <i>nâ€</i> propylamine Revisited from a Kinetic Reaction Model. ChemElectroChem, 2022, 9, .	3.4	7
9	A fully integrated and handheld electrochemiluminescence device for detection of dopamine in bio-samples. Sensors and Actuators B: Chemical, 2022, 366, 131972.	7.8	16
10	Potential Difference-Modulated Synthesis of Self-Standing Covalent Organic Framework Membranes at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2022, 144, 11778-11787.	13.7	19
11	Imaging electrochemiluminescence layer to dissect concentration-dependent light intensity for accurate quantitative analysis., 2022, 1, 100028.		6
12	Microtube Electrodes for Imaging the Electrochemiluminescence Layer and Deciphering the Reaction Mechanism. Angewandte Chemie - International Edition, 2021, 60, 2089-2093.	13.8	69
13	Microtube Electrodes for Imaging the Electrochemiluminescence Layer and Deciphering the Reaction Mechanism. Angewandte Chemie, 2021, 133, 2117-2121.	2.0	19
14	Thermoelectric Response of Ionâ€Selective Membranes: Modelling and Experimental Studies. ChemElectroChem, 2021, 8, 585-591.	3.4	3
15	Interference-free Detection of Caffeine in Complex Matrices Using a Nanochannel Electrode Modified with Binary Hydrophilic–Hydrophobic PDMS. ACS Sensors, 2021, 6, 1604-1612.	7.8	13
16	Spatially Selective Imaging of Cell–Matrix and Cell–Cell Junctions by Electrochemiluminescence. Angewandte Chemie - International Edition, 2021, 60, 11769-11773.	13.8	97
17	Spatially Selective Imaging of Cell–Matrix and Cell–Cell Junctions by Electrochemiluminescence. Angewandte Chemie, 2021, 133, 11875-11879.	2.0	12
18	Highly efficient exosome purification from human plasma by tangential flow filtration based microfluidic chip. Sensors and Actuators B: Chemical, 2021, 333, 129563.	7.8	51

#	Article	IF	Citations
19	Ratiometric Fluorescent Lateral Flow Immunoassay for Pointâ€ofâ€Care Testing of Acute Myocardial Infarction. Angewandte Chemie - International Edition, 2021, 60, 13042-13049.	13.8	123
20	Ratiometric Fluorescent Lateral Flow Immunoassay for Pointâ€ofâ€Care Testing of Acute Myocardial Infarction. Angewandte Chemie, 2021, 133, 13152-13159.	2.0	88
21	Confined Electrochemiluminescence at Microtube Electrode Ensembles for Local Sensing of Single Cells ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2911-2916.	4.9	11
22	Implantable platinum nanotree microelectrode with a battery-free electrochemical patch for peritoneal carcinomatosis monitoring. Biosensors and Bioelectronics, 2021, 185, 113265.	10.1	13
23	Deciphering the Mechanisms of Electrochemiluminescence by Spatially Resolved Measurements. Analysis & Sensing, 2021, 1, 148-155.	2.0	9
24	A wireless, ingestible pH sensing capsule system based on iridium oxide for monitoring gastrointestinal health. Sensors and Actuators B: Chemical, 2021, 349, 130781.	7.8	14
25	Imaging Cellâ€Matrix Adhesions and Collective Migration of Living Cells by Electrochemiluminescence Microscopy. Angewandte Chemie, 2020, 132, 457-464.	2.0	45
26	Silica Nanochannel Membranes for Electrochemical Analysis and Molecular Sieving: A Comprehensive Review. Critical Reviews in Analytical Chemistry, 2020, 50, 424-444.	3.5	61
27	Imaging Cellâ€Matrix Adhesions and Collective Migration of Living Cells by Electrochemiluminescence Microscopy. Angewandte Chemie - International Edition, 2020, 59, 449-456.	13.8	142
28	Electrochemiluminescence Self-Interference Spectroscopy with Vertical Nanoscale Resolution. Journal of the American Chemical Society, 2020, 142, 1222-1226.	13.7	63
29	Electrodeposition of nickel nanostructures using silica nanochannels as confinement for low-fouling enzyme-free glucose detection. Journal of Materials Chemistry B, 2020, 8, 3616-3622.	5.8	23
30	Fabrication, Characterization, and Analytical Application of Silica Nanopore Array-Modified Platinum Electrode. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4143-4149.	8.0	8
31	Gated thermoelectric sensation by nanochannels grafted with thermally responsive polymers. Chemical Communications, 2020, 56, 14291-14294.	4.1	3
32	Spatially resolved electrochemistry enabled by thin-film optical interference. Chemical Communications, 2020, 56, 12359-12362.	4.1	4
33	Quantum Dots with Highly Efficient, Stable, and Multicolor Electrochemiluminescence. ACS Central Science, 2020, 6, 1129-1137.	11.3	107
34	Platinized Silica Nanoporous Membrane Electrodes for Lowâ€Fouling Hydrogen Peroxide Detection. ChemElectroChem, 2020, 7, 2081-2086.	3.4	22
35	Nanocage-confined electrochemiluminescence for the detection of dopamine released from living cells. Chemical Communications, 2020, 56, 8249-8252.	4.1	34
36	Editorial. Journal of Analysis and Testing, 2020, 4, 55-56.	5.1	0

#	Article	IF	CITATIONS
37	Nanochannel Templated Iridium Oxide Nanostructures for Wide-Range pH Sensing from Solutions to Human Skin Surface. Analytical Chemistry, 2020, 92, 3844-3851.	6.5	16
38	Electrochemiluminescence Waveguide in Single Crystalline Molecular Wires. Angewandte Chemie - International Edition, 2020, 59, 6745-6749.	13.8	54
39	Electrochemiluminescence Waveguide in Single Crystalline Molecular Wires. Angewandte Chemie, 2020, 132, 6811-6815.	2.0	42
40	Electrochemiluminescence Singleâ€Cell Analysis: Intensity―and Imagingâ€Based Methods. ChemPlusChem, 2020, 85, 725-733.	2.8	32
41	Confined Electrochemiluminescence Generation at Ultra-High-Density Gold Microwell Electrodes. Frontiers in Chemistry, 2020, 8, 630246.	3.6	10
42	Electrochemiluminescence imaging of latent fingerprints by electropolymerized luminol. Journal of Electroanalytical Chemistry, 2020, 870, 114238.	3.8	13
43	Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites for Escherichia Coli detection. Sensors and Actuators B: Chemical, 2019, 297, 126811.	7.8	62
44	Anomalous Proton Transport across Silica Nanochannel Membranes Investigated by Ion Conductance Measurements. Analytical Chemistry, 2019, 91, 13433-13438.	6.5	8
45	Ionic Strength Gated Redox Current Rectification by Ferrocene Grafted in Silica Nanochannels. Langmuir, 2019, 35, 14486-14491.	3.5	5
46	Visualization of Latent Fingermarks by Enhanced Chemiluminescence Immunoassay and Pattern Recognition. Analytical Chemistry, 2019, 91, 12859-12865.	6.5	22
47	In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Analytical Chemistry, 2019, 91, 3645-3651.	6.5	97
48	An ultrathin and highly porous silica nanochannel membrane: toward highly efficient salinity energy conversion. Journal of Materials Chemistry A, 2019, 7, 2385-2391.	10.3	68
49	Recent advances in electrochemiluminescence imaging analysis based on nanomaterials and micro-/nanostructures. Chinese Chemical Letters, 2019, 30, 1593-1599.	9.0	36
50	Bionic Thermoelectric Response with Nanochannels. Journal of the American Chemical Society, 2019, 141, 8608-8615.	13.7	86
51	Optical methods for studying local electrochemical reactions with spatial resolution: A critical review. Analytica Chimica Acta, 2019, 1074, 1-15.	5.4	24
52	Lowâ€voltage efficient electroosmotic pumps with ultrathin silica nanoporous membrane. Electrophoresis, 2019, 40, 2149-2156.	2.4	8
53	Unraveling Mass and Electron Transfer Kinetics at Silica Nanochannel Membrane Modified Electrodes by Scanning Electrochemical Microscopy. Analytical Chemistry, 2019, 91, 15436-15443.	6.5	5
54	Thermo-osmotic energy conversion and storage by nanochannels. Journal of Materials Chemistry A, 2019, 7, 25258-25261.	10.3	47

#	Article	IF	Citations
55	Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Biosensors and Bioelectronics, 2019, 129, 284-291.	10.1	60
56	Quantitative Assessment of Molecular Transport through Sub-3 nm Silica Nanochannels by Scanning Electrochemical Microscopy. Analytical Chemistry, 2019, 91, 1548-1556.	6.5	15
57	lonic Current Rectification by Laminated Bipolar Silica Isoporous Membrane. Analytical Chemistry, 2019, 91, 1227-1231.	6.5	28
58	Light enhanced electrochemistry and electrochemiluminescence of luminol at glassy carbon electrodes. Electrochemistry Communications, 2019, 98, 47-52.	4.7	7
59	Fingerprints mapping and biochemical sensing on smartphone by electrochemiluminescence. Sensors and Actuators B: Chemical, 2019, 285, 34-41.	7.8	34
60	Electrochemiluminescence of metallated porous organic polymers. Journal of Electroanalytical Chemistry, 2018, 818, 176-180.	3.8	9
61	Centimeter-scale continuous silica isoporous membranes for molecular sieving. Journal of Membrane Science, 2018, 558, 86-93.	8.2	19
62	Label-free electrochemical biosensors based on $3,3\hat{a}\in^2,5,5\hat{a}\in^2$ -tetramethylbenzidine responsive isoporous silica-micelle membrane. Biosensors and Bioelectronics, 2018, 105, 129-136.	10.1	15
63	Highly Efficient Desalting by Silica Isoporous Membrane-Based Microfluidic Chip for Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2018, 90, 14395-14401.	6.5	21
64	Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. Journal of the American Chemical Society, 2018, 140, 15904-15915.	13.7	251
65	pH-Controlled Drug Release by Diffusion through Silica Nanochannel Membranes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33986-33992.	8.0	41
66	Electrochemical detection of Alzheimer's disease related substances in biofluids by silica nanochannel membrane modified glassy carbon electrodes. Analyst, The, 2018, 143, 4756-4763.	3.5	40
67	Silica-Nanochannel-Based Interferometric Sensor for Selective Detection of Polar and Aromatic Volatile Organic Compounds. Analytical Chemistry, 2018, 90, 10780-10785.	6.5	20
68	Fabrication and Use of Nanopipettes in Chemical Analysis. Annual Review of Analytical Chemistry, 2018, 11, 265-286.	5.4	57
69	Electrochemiluminescence of a Vinylâ€Functionalized Ruthenium Complex and Its Monolayer Formed through the Photoinduced Thiolâ€Ene Click Reaction. ChemElectroChem, 2017, 4, 1763-1767.	3.4	5
70	Portable Sensor for the Detection of Choline and Its Derivatives Based on Silica Isoporous Membrane and Gellified Nanointerfaces. ACS Sensors, 2017, 2, 803-809.	7.8	25
71	Detection of Metoprolol in Human Biofluids and Pharmaceuticals via Ion-Transfer Voltammetry at the Nanoscopic Liquid/Liquid Interface Array. Analytical Chemistry, 2017, 89, 945-951.	6.5	25
72	Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: Trans-membrane resistance and ion transfer reactions. Journal of Electroanalytical Chemistry, 2017, 784, 62-68.	3.8	14

#	Article	IF	CITATIONS
73	Nanochannels as molecular check valves. Nanoscale, 2017, 9, 18523-18528.	5.6	15
74	Imaging Analysis Based on Electrogenerated Chemiluminescence. Journal of Analysis and Testing, 2017, 1, 1.	5.1	41
75	Optical Sensors Based on Optical Interference of Nanoporous Film. Acta Chimica Sinica, 2017, 75, 1071.	1.4	1
76	Gated Molecular Transport in Highly Ordered Heterogeneous Nanochannel Array Electrode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33343-33349.	8.0	30
77	Electrochemical determination of chloramphenicol in milk and honey using vertically ordered silica mesochannels and surfactant micelles as the extraction and anti-fouling element. Journal of Electroanalytical Chemistry, 2016, 781, 383-388.	3.8	21
78	Molecular Filtration by Ultrathin and Highly Porous Silica Nanochannel Membranes: Permeability and Selectivity. Analytical Chemistry, 2016, 88, 10252-10258.	6.5	49
79	Redox cycling with ITO electrodes separated by an ultrathin silica nanochannel membrane. Electrochemistry Communications, 2016, 72, 1-4.	4.7	8
80	Anti-Biofouling Isoporous Silica-Micelle Membrane Enabling Drug Detection in Human Whole Blood. Analytical Chemistry, 2016, 88, 8364-8368.	6.5	74
81	Unraveling the Phaseâ€Transfer Catalysis Mechanism of Oxygen Reduction Catalyzed by Iron(III) <i>>meso</i> à€tetraâ€(4â€ <i>N</i> àêMethylâ€pyridyl) Porphine at the Liquid/Liquid Interface. ChemElectroChem, 2016, 3, 1781-1786.	, 3.4	4
82	Polydimethysiloxane Modified Silica Nanochannel Membrane for Hydrophobicity-Based Molecular Filtration and Detection. Analytical Chemistry, 2016, 88, 7821-7827.	6.5	35
83	Tailoring Molecular Permeability of Nanochannel-Micelle Membranes for Electrochemical Analysis of Antioxidants in Fruit Juices without Sample Treatment. Analytical Chemistry, 2016, 88, 11001-11006.	6.5	45
84	Vertically Ordered Silica Mesochannel Modified Bipolar Electrode for Electrochemiluminescence Imaging Analysis. ChemElectroChem, 2016, 3, 480-486.	3.4	36
85	Permselective Ion Transport Across the Nanoscopic Liquid/Liquid Interface Array. Analytical Chemistry, 2016, 88, 6563-6569.	6.5	28
86	Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Analytical and Bioanalytical Chemistry, 2016, 408, 2781-2791.	3.7	41
87	Highly ordered surfactant micelles function as the extraction matrix for direct electrochemical detection of halonitrobenzenes at the ppb level. Analyst, The, 2016, 141, 2303-2307.	3.5	15
88	Molecular electrocatalysis of oxygen reduction by iron(II) phthalocyanine at the liquid/liquid interface. Journal of Electroanalytical Chemistry, 2016, 766, 37-43.	3.8	11
89	Vertically ordered silica mesochannel films: electrochemistry and analytical applications. Analyst, The, 2016, 141, 3482-3495.	3.5	76
90	Adsorption of Microperoxidase-11 in Vertical Silica Mesochannels and Electrochemical Investigation of Its Electron Transfer Properties. Electrochimica Acta, 2015, 161, 290-296.	5.2	11

#	Article	IF	Citations
91	Advances in the development and component recognition of latent fingerprints. Science China Chemistry, 2015, 58, 1090-1096.	8.2	50
92	Biomimetic Oxygen Reduction Reaction Catalyzed by Microperoxidase-11 at Liquid/Liquid Interfaces. Journal of Physical Chemistry C, 2015, 119, 11685-11693.	3.1	14
93	An electrochemistry assisted approach for fast, low-cost and gram-scale synthesis of mesoporous silica nanoparticles. RSC Advances, 2015, 5, 65922-65926.	3.6	10
94	Two orders-of-magnitude enhancement in the electrochemiluminescence of <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mtext>Ru</mml:mtext><mml:msub><mml:mrow> by vertically ordered silica. Analytica Chimica Acta, 2015, 886, 48-55.</mml:mrow></mml:msub></mml:mrow></mml:msup></mml:mrow></mml:math>	w> ^{5,4} mml:n	nrðw> <mml:< td=""></mml:<>
95	Highly Ordered Binary Assembly of Silica Mesochannels and Surfactant Micelles for Extraction and Electrochemical Analysis of Trace Nitroaromatic Explosives and Pesticides. Analytical Chemistry, 2015, 87, 4436-4441.	6.5	100
96	Vertically ordered silica mesochannels as preconcentration materials for the electrochemical detection of methylene blue. Science China Chemistry, 2015, 58, 1593-1599.	8.2	14
97	Highly hydrophobic solid contact based on graphene-hybrid nanocomposites for all solid state potentiometric sensors with well-formulated phase boundary potentials. Journal of Electroanalytical Chemistry, 2015, 740, 21-27.	3.8	24
98	Direct electrochemical analysis in complex samples using ITO electrodes modified with permselective membranes consisting of vertically ordered silica mesochannels and micelles. Chemical Communications, 2015, 51, 17736-17739.	4.1	50
99	Ultrathin Silica Membranes with Highly Ordered and Perpendicular Nanochannels for Precise and Fast Molecular Separation. ACS Nano, 2015, 9, 11266-11277.	14.6	133
100	A non-enzymatic hydrogen peroxide sensor based on platinum nanoparticle–polyaniline nanocomposites hosted in mesoporous silica film. Journal of Electroanalytical Chemistry, 2015, 736, 83-87.	3.8	48
101	Imageâ€Contrast Technology Based on the Electrochemiluminescence of Porous Silicon and Its Application in Fingerprint Visualization. Angewandte Chemie - International Edition, 2014, 53, 9822-9826.	13.8	77
102	Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis. Biosensors and Bioelectronics, 2014, 53, 148-153.	10.1	75
103	Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chemical Communications, 2014, 50, 9097-9100.	4.1	66
104	Gold Nanoparticles Confined in Vertically Aligned Silica Nanochannels and Their Electrocatalytic Activity Toward Ascorbic Acid. Chemistry - A European Journal, 2014, 20, 12777-12780.	3.3	35
105	Immunological Multimetal Deposition for Rapid Visualization of Sweat Fingerprints. Angewandte Chemie - International Edition, 2014, 53, 12609-12612.	13.8	57
106	Differential pulse voltammetry detection of dopamine and ascorbic acid by permselective silica mesochannels vertically attached to the electrode surface. Analyst, The, 2014, 139, 3926-3931.	3.5	72
107	Enhancing the visualization of latent fingerprints by aggregation induced emission of siloles. Analyst, The, 2014, 139, 2332-2335.	3.5	64
108	A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst, The, 2014, 139, 4934-4939.	3.5	59

#	Article	IF	Citations
109	Vertically Oriented Silica Mesochannels as the Template for Electrodeposition of Polyaniline Nanostructures and Their Electrocatalytic and Electroanalytical Applications. Chemistry - A European Journal, 2014, 20, 1829-1833.	3.3	35
110	Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence. Analyst, The, 2013, 138, 2357.	3.5	28
111	Dependence of electrochemical charging of gold nanoparticle monolayer films on counterion proximity. Electrochemistry Communications, 2013, 33, 27-30.	4.7	6
112	Enhancing the visualization of latent fingerprints by electrochemiluminescence of rubrene. Electrochemistry Communications, 2013, 33, 92-95.	4.7	20
113	Effect of chloride anion on the electrochemical charging of gold nanoparticle films. Journal of Solid State Electrochemistry, 2013, 17, 2429-2435.	2.5	4
114	A simple approach for fabrication of microring electrodes. Journal of Electroanalytical Chemistry, 2013, 694, 12-16.	3.8	4
115	Oxygen reduction with tetrathiafulvalene at liquid/liquid interfaces catalyzed by 5,10,15,20-tetraphenylporphyrin. Journal of Electroanalytical Chemistry, 2013, 709, 26-30.	3.8	19
116	Reductive electron transfer dynamics in gold nanocluster films contacted with aqueous electrolytes. Electrochemistry Communications, 2012, 22, 8-11.	4.7	5
117	Aggregation induced emission for the recognition of latent fingerprints. Chemical Communications, 2012, 48, 4109.	4.1	146
118	Imaging Latent Fingerprints by Electrochemiluminescence. Angewandte Chemie - International Edition, 2012, 51, 8068-8072.	13.8	190
119	Protonâ€Coupled O ₂ Reduction Reaction Catalysed by Cobalt Phthalocyanine at Liquid/Liquid Interfaces. Chemistry - A European Journal, 2012, 18, 7372-7376.	3.3	31
120	Metalâ€Freeâ€Porphyrinâ€Catalyzed Oxygen Reduction at Liquid–Liquid Interfaces. Chemistry - A European Journal, 2012, 18, 3169-3173.	3.3	29
121	Microfluidic droplet-based liquid/liquid extraction modulated by the interfacial Galvani potential difference. Chemical Communications, 2011, 47, 5723.	4.1	7
122	Ion transfer coupled discrete charging of immobilised gold nanoclusters in polar organic solvents. Electrochemistry Communications, 2011, 13, 875-878.	4.7	7
123	A label-free optical sensor based on nanoporous gold arrays for the detection of oligodeoxynucleotides. Biosensors and Bioelectronics, 2011, 30, 21-27.	10.1	33
124	Discrete reductive charging of immobilized gold nanoclusters in aqueous media. Electrochemistry Communications, 2011, 13, 631-633.	4.7	7
125	7,7′,8,8′-Tetracyanoquinodimethane as a redox probe for studying cation transfer across the water/2-nitrophenyl octyl ether interface at three-phase junctions supported by carbon ink screen-printed electrodes. Journal of Electroanalytical Chemistry, 2011, 656, 237-242.	3.8	8
126	Ionic partition diagram of tetraphenylporphyrin at the water 1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2011, 656, 147-151.	3.8	7

#	Article	IF	CITATIONS
127	Oxygen and proton reduction by decamethylferrocene in non-aqueous acidic media. Chemical Communications, 2010, 46, 2918.	4.1	59
128	Dioxygen Reduction by Cobalt(II) Octaethylporphyrin at Liquid Liquid Interfaces. ChemPhysChem, 2010, 11, 2979-2984.	2.1	23
129	Oxygen reduction by decamethylferrocene at liquid/liquid interfaces catalyzed by dodecylaniline. Journal of Electroanalytical Chemistry, 2010, 639, 102-108.	3.8	40
130	lon Transfer Voltammetry by a Simple Two Polarized Interfaces Setup. Analytical Chemistry, 2010, 82, 7857-7860.	6.5	32
131	Oxygen Reduction Catalyzed by a Fluorinated Tetraphenylporphyrin Free Base at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2010, 132, 13733-13741.	13.7	80
132	Redox Charging of Nanoparticle Thin Films in Ionic Liquids. Journal of Physical Chemistry C, 2010, 114, 18103-18108.	3.1	9
133	Molecular electrocatalysis at soft interfaces. Physical Chemistry Chemical Physics, 2010, 12, 15163.	2.8	82
134	Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2010, 132, 2655-2662.	13.7	141
135	Proton Pump for O ₂ Reduction Catalyzed by 5,10,15,20â€Tetraphenylporphyrinatocobalt(II). Chemistry - A European Journal, 2009, 15, 2335-2340.	3.3	61
136	Hydrogen Evolution at Liquid–Liquid Interfaces. Angewandte Chemie - International Edition, 2009, 48, 5139-5142.	13.8	77
137	Detection of hydrogen peroxide produced at a liquid/liquid interface using scanning electrochemical microscopy. Electrochemistry Communications, 2009, 11, 473-476.	4.7	39
138	Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid. Electrochemistry Communications, 2009, 11, 1940-1943.	4.7	43
139	Voltammetry for surface-active ions at polarisable liquid liquid interfaces. Journal of Electroanalytical Chemistry, 2009, 634, 82-89.	3.8	14
140	Proton-Coupled Oxygen Reduction at Liquidâ^'Liquid Interfaces Catalyzed by Cobalt Porphine. Journal of the American Chemical Society, 2009, 131, 13453-13459.	13.7	109
141	About the Electrospray Ionization Source in Mass Spectrometry: Electrochemistry and On-chip Reactions. Chimia, 2009, 63, 283.	0.6	5
142	H ₂ O ₂ Generation by Decamethylferrocene at a Liquid Liquid Interface. Angewandte Chemie - International Edition, 2008, 47, 4675-4678.	13.8	84
143	Porphyrin "Mille-Feuilles―photo-electrodes. Journal of Electroanalytical Chemistry, 2008, 621, 322-329.	3.8	2
144	SECM photography. Electrochemistry Communications, 2008, 10, 714-718.	4.7	5

#	Article	IF	Citations
145	Protoporphyrin IX sensitized titanium oxide gel electrode. Inorganica Chimica Acta, 2008, 361, 746-760.	2.4	6
146	Evidence of tetraphenylporphyrin monoacids by ion-transfer voltammetry at polarized liquid liquid interfaces. Chemical Communications, 2008, , 5037.	4.1	38
147	Peptideâ^'Phospholipid Complex Formation at Liquidâ^'Liquid Interfaces. Analytical Chemistry, 2008, 80, 9499-9507.	6.5	31
148	Nanoporous Photocathode and Photoanode Made by Multilayer Assembly of Quantum Dots. ACS Nano, 2008, 2, 984-992.	14.6	34
149	3D-ITIES supported on porous reticulated vitreous carbon. Journal of Electroanalytical Chemistry, 2007, 604, 65-71.	3.8	7
150	CdSe Sensitized Thin Aqueous Films:  Probing the Potential Distribution Inside Multilayer Assemblies. Langmuir, 2006, 22, 10652-10658.	3.5	9
151	Solvent Effect on Redox Properties of Hexanethiolate Monolayer-Protected Gold Nanoclusters. Journal of Physical Chemistry B, 2006, 110, 21460-21466.	2.6	29
152	Antioxidant Redox Sensors Based on DNA Modified Carbon Screen-Printed Electrodes. Analytical Chemistry, 2006, 78, 6879-6884.	6.5	50
153	2-Dimensional Porphyrin Self-Assemblies at Molecular Interfaces. Langmuir, 2006, 22, 1112-1120.	3.5	9
154	Simulations of the adsorption of ionic species at polarisable liquid $\hat{\Sigma}$ liquid interfaces. Journal of Electroanalytical Chemistry, 2005, 577, 187-196.	3.8	26
155	Adsorption and photoreactivity of CdSe nanoparticles at liquid liquid interfaces. Journal of Electroanalytical Chemistry, 2005, 583, 241-247.	3.8	42
156	Absolute Standard Redox Potential of Monolayer-Protected Gold Nanoclusters. Journal of Physical Chemistry B, 2005, 109, 11427-11431.	2.6	41
157	Redox Properties of Self-Assembled Gold Nanoclusters. Journal of Physical Chemistry B, 2005, 109, 23925-23929.	2.6	25
158	Reactivity of Monolayer-Protected Gold Nanoclusters at Dye-Sensitized Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2005, 127, 10760-10766.	13.7	15
159	Reversible Voltage-Induced Assembly of Au Nanoparticles at Liquid Liquid Interfaces. Journal of the American Chemical Society, 2004, 126, 915-919.	13.7	127
160	Study of Electron-Transfer Reactions across an Externally Polarized Water/1,2-Dichloroethane Interface by Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 2002, 106, 6713-6717.	2.6	48
161	Investigation of Ion Transfer Across the Micro-Water/Nitrobenzene Interface Facilitated by a Fullerene Derivative. Analytical Chemistry, 2002, 74, 373-378.	6.5	19
162	Mechanisms of sodium and potassium ions transfer facili-tated by dibenzo-15-crown-5 across the water / 1, 2-dichloro- ethane interface using micropipettes. Science Bulletin, 2002, 47, 1325.	1.7	4