Jean François F Guillemoles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2000, 104, 2053-2059.	2.6	688
2	Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, 2004, 77, 725-737.	6.1	356
3	Intermediate band solar cells: Recent progress and future directions. Applied Physics Reviews, 2015, 2, 021302.	11.3	314
4	Stability Issues of Cu(In,Ga)Se2-Based Solar Cells. Journal of Physical Chemistry B, 2000, 104, 4849-4862.	2.6	235
5	Hot carrier solar cells: Principles, materials and design. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2862-2866.	2.7	192
6	Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method. Thin Solid Films, 2002, 403-404, 312-319.	1.8	186
7	Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. Journal of Applied Physics, 1999, 86, 497-505.	2.5	174
8	A Theoretical Investigation of the Ground and Excited States of Selected Ru and Os Polypyridyl Molecular Dyes. Journal of Physical Chemistry A, 2002, 106, 11354-11360.	2.5	174
9	Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials, 2018, 19, 336-369.	6.1	162
10	Guide for the perplexed to the Shockley–Queisser model for solar cells. Nature Photonics, 2019, 13, 501-505.	31.4	153
11	Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films, 2004, 451-452, 86-92.	1.8	149
12	Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films, 2008, 516, 6948-6953.	1.8	141
13	xmlns:mml= ["] http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>Culn</mml:mi> <mml:mo stretchy="false">(<mml:mi) (mathvariant="bold</td><td>" 0.784314="" 1="" 10="" 262="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj="">S7.8</mml:mi)></mml:mo 	:mi> <mml:m 133</mml:m 	
14	Physical Review Letters, 2010, 104, 056401. One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure. Journal of Applied Physics, 1996, 79, 7293-7302.	2.5	118
15	Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. Journal Physics D: Applied Physics, 2006, 39, 453-460.	2.8	118
16	Hot carrier solar cells: Achievable efficiency accounting for heat losses in the absorber and through contacts. Applied Physics Letters, 2010, 97, .	3.3	117
17	High resolution XPS studies of Se chemistry of a Cu(In, Ga)Se2 surface. Applied Surface Science, 2002, 202, 8-14.	6.1	115
18	Progress on hot carrier cells. Solar Energy Materials and Solar Cells, 2009, 93, 713-719.	6.2	108

#	Article	IF	CITATIONS
19	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. Advanced Materials, 1999, 11, 957-961.	21.0	103
20	Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy and Environmental Science, 2016, 9, 2286-2294.	30.8	102
21	Interface redox engineering of Cu(In,Ga)Se 2 – based solar cells: oxygen, sodium, and chemical bath effects. Thin Solid Films, 2000, 361-362, 353-359.	1.8	96
22	Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers. Energy and Environmental Science, 2012, 5, 6225.	30.8	94
23	Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers. ACS Photonics, 2014, 1, 878-884.	6.6	90
24	Simultaneous Control of Surface Potential and Wetting of Solids with Chemisorbed Multifunctional Ligands. Journal of the American Chemical Society, 1997, 119, 5720-5728.	13.7	89
25	Cu(In,Ga)(S,Se)2 solar cells and modules by electrodeposition. Thin Solid Films, 2005, 480-481, 526-531.	1.8	89
26	Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature. Nature Energy, 2018, 3, 236-242.	39.5	86
27	Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application. Journal of Physics and Chemistry of Solids, 2005, 66, 2019-2023.	4.0	85
28	One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy. Thin Solid Films, 2007, 515, 5909-5912.	1.8	79
29	Selective ablation of thin films with short and ultrashort laser pulses. Applied Surface Science, 2006, 252, 4814-4818.	6.1	77
30	Thinning of CIGS solar cells: Part II: Cell characterizations. Thin Solid Films, 2011, 519, 7212-7215.	1.8	75
31	Ultrathin GaAs Solar Cells With a Silver Back Mirror. IEEE Journal of Photovoltaics, 2015, 5, 565-570.	2.5	74
32	Modelling of hot carrier solar cell absorbers. Solar Energy Materials and Solar Cells, 2010, 94, 1516-1521.	6.2	73
33	Contactless mapping of saturation currents of solar cells by photoluminescence. Applied Physics Letters, 2012, 100, .	3.3	72
34	Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering. Progress in Photovoltaics: Research and Applications, 2012, 20, 582-587.	8.1	71
35	Defects in Cu(In, Ga) Se2 semiconductors and their role in the device performance of thin-film solar cells. Progress in Photovoltaics: Research and Applications, 1997, 5, 121-130.	8.1	69
36	Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nature Communications, 2022, 13, .	12.8	58

#	Article	IF	CITATIONS
37	Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions. Thin Solid Films, 2011, 519, 7207-7211.	1.8	57
38	Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures. Applied Physics Letters, 2015, 106, .	3.3	55
39	Wurtzite silicon as a potential absorber in photovoltaics: Tailoring the optical absorption by applying strain. Physical Review B, 2015, 92, .	3.2	54
40	Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors. IEEE Journal of Photovoltaics, 2017, 7, 1433-1441.	2.5	54
41	Stability of Cu(In,Ga)Se 2 solar cells: a thermodynamic approach. Thin Solid Films, 2000, 361-362, 338-345.	1.8	53
42	Ab initio calculation of intrinsic point defects in CulnSe2. Journal of Physics and Chemistry of Solids, 2003, 64, 1657-1663.	4.0	52
43	The puzzle of Cu(In,Ga)Se2 (CIGS) solar cells stability. Thin Solid Films, 2002, 403-404, 405-409.	1.8	49
44	Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP:Cr. Physical Review Letters, 2009, 102, 227204.	7.8	48
45	Toward microscale Cu(In,Ga)Se2 solar cells for efficient conversion and optimized material usage: Theoretical evaluation. Journal of Applied Physics, 2010, 108, 034907.	2.5	42
46	Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. Journal of Photonics for Energy, 2012, 2, 027004.	1.3	42
47	Resistive and thermal scale effects for Cu(In, Ga)Se2 polycrystalline thin film microcells under concentration. Energy and Environmental Science, 2011, 4, 4972.	30.8	41
48	Microscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 thin films. Applied Physics Letters, 2011, 98, .	3.3	41
49	Solar cells with improved efficiency based on electrodeposited copper indium diselenide thin films. Advanced Materials, 1994, 6, 379-381.	21.0	39
50	Tuning the chemical properties of europium complexes as downshifting agents for copper indium gallium selenide solar cells. Journal of Materials Chemistry A, 2017, 5, 14031-14040.	10.3	39
51	Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells. Journal of Applied Physics, 2012, 111, .	2.5	38
52	Recrystallization of electrodeposited copper indium diselenide thin films in an atmosphere of elemental selenium. Advanced Materials, 1994, 6, 376-379.	21.0	37
53	Chemical elaboration of well defined Cu(In,Ga)Se2 surfaces after aqueous oxidation etching. Journal of Physics and Chemistry of Solids, 2003, 64, 1791-1796.	4.0	37
54	Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 <i>μ</i> m. Journal of Applied Physics, 2012, 112, .	2.5	37

#	Article	IF	CITATIONS
55	Impact of oxygen concentration during the deposition of window layers on lowering the metastability effects in Cu(In,Ga)Se ₂ /CBD Zn(S,O) based solar cell. Progress in Photovoltaics: Research and Applications, 2015, 23, 1820-1827.	8.1	37
56	Quantitative luminescence mapping of Cu(In, Ga)Se ₂ thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1305-1312.	8.1	35
57	Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence. Nano Letters, 2017, 17, 6667-6675.	9.1	35
58	Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell. Applied Physics Letters, 2015, 106, .	3.3	33
59	Wet treatment based interface engineering for high efficiency Cu(In,Ga)Se 2 solar cells. Thin Solid Films, 2000, 361-362, 187-192.	1.8	32
60	Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: Role of window layers. Thin Solid Films, 2011, 519, 7600-7605.	1.8	32
61	Cu(In, Ga)Se2 microcells: High efficiency and low material consumption. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	31
62	Admittance spectroscopy of cadmium free CIGS solar cells heterointerfaces. Thin Solid Films, 2006, 511-512, 320-324.	1.8	30
63	First Stages of CuInSe[sub 2] Electrodeposition from Cu(II)-In(III)-Se(IV) Acidic Solutions on Polycrystalline Mo Films. Journal of the Electrochemical Society, 2008, 155, D141.	2.9	29
64	Copper diffusion in copper sulfide: a systematic study. Ionics, 1998, 4, 364-371.	2.4	28
65	Fe-dopedCuInSe2: Anab initiostudy of magnetic defects in a photovoltaic material. Physical Review B, 2005, 71, .	3.2	28
66	Impedance measurements of nanoporosity in electrodeposited ZnO films for DSSC. Electrochemistry Communications, 2010, 12, 697-699.	4.7	28
67	New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer. Journal of Chemical Physics, 2016, 145, 154702.	3.0	28
68	Measuring sheet resistance of CIGS solar cell's window layer by spatially resolved electroluminescence imaging. Thin Solid Films, 2011, 519, 7493-7496.	1.8	27
69	New insights in the electrodeposition mechanism of CuInSe2thin films for solar cell applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3445-3448.	0.8	26
70	Design of a lattice-matched III–V–N/Si photovoltaic tandem cell monolithically integrated on silicon substrate. Optical and Quantum Electronics, 2014, 46, 1397-1403.	3.3	26
71	InGaAs/GaAsP quantum wells for hot carrier solar cells. Proceedings of SPIE, 2012, , .	0.8	25
72	Correlations between electrical and optical properties in lattice-matched GaAsPN/GaP solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 53-60.	6.2	25

#	Article	IF	CITATIONS
73	Investigation of the metastability behavior of CIGS based solar cells with ZnMgO–Zn(S,O,OH) window-buffer layers. Thin Solid Films, 2011, 519, 7606-7610.	1.8	24
74	Ga gradients in Cu(In,Ga)Se2: Formation, characterization, and consequences. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	24
75	Spatial Inhomogeneity Analysis of Cesium-Rich Wrinkles in Triple-Cation Perovskite. Journal of Physical Chemistry C, 2018, 122, 23345-23351.	3.1	24
76	Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures. International Journal of Photoenergy, 2014, 2014, 1-11.	2.5	23
77	Optical absorption and thermal conductivity of GaAsPN absorbers grown on GaP in view of their use in multijunction solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 291-298.	6.2	23
78	Electrodeposition of Epitaxial ZnSe Films on InP and GaAs from an Aqueous Zinc Sulfate–Selenosulfate Solution. Advanced Materials, 2002, 14, 1286-1290.	21.0	21
79	Electrochemical Deposition of ZnSe from Dimethyl Sulfoxide Solution and Characterization of Epitaxial Growth. Journal of Physical Chemistry B, 2004, 108, 13191-13199.	2.6	21
80	Mo/Cu(In, Ga)Se2 back interface chemical and optical properties for ultrathin CIGSe solar cells. Applied Surface Science, 2012, 258, 3058-3061.	6.1	21
81	Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations. Journal of Physics Condensed Matter, 2017, 29, 06LT02.	1.8	21
82	Two carrier temperatures non-equilibrium generalized Planck law for semiconductors. Physica B: Condensed Matter, 2016, 498, 7-14.	2.7	20
83	Redox and solution chemistry of the SeSO32â^'–Zn–EDTA2â^' system and electrodeposition behavior of ZnSe from alkaline solutions. Journal of Electroanalytical Chemistry, 2003, 558, 9-17.	3.8	19
84	Hot Carrier Solar Cells: Controlling Thermalization in Ultrathin Devices. IEEE Journal of Photovoltaics, 2012, 2, 506-511.	2.5	19
85	GaSe Formation at the Cu(In,Ga)Se ₂ /Mo Interface–A Novel Approach for Flexible Solar Cells by Easy Mechanical Liftâ€Off. Advanced Materials Interfaces, 2014, 1, 1400044.	3.7	19
86	Differential in-depth characterization of co-evaporated Cu(In,Ga)Se2 thin films for solar cell applications. Thin Solid Films, 2014, 558, 47-53.	1.8	19
87	Hot carrier relaxation and inhibited thermalization in superlattice heterostructures: The potential for phonon management. Applied Physics Letters, 2021, 118, .	3.3	19
88	Thermodynamic Stability of p/n Junctions. The Journal of Physical Chemistry, 1995, 99, 14486-14493.	2.9	18
89	Fast electrodeposition route for cadmium telluride solar cells. Thin Solid Films, 2000, 361-362, 118-122.	1.8	18
90	Study of a micro-concentrated photovoltaic system based on Cu(In,Ga)Se_2 microcells array. Applied Optics, 2016, 55, 6656.	2.1	18

#	Article	IF	CITATIONS
91	Defects characterization in thin films photovoltaics materials by correlated high-frequency modulated and time resolved photoluminescence: An application to Cu(In,Ga)Se2. Thin Solid Films, 2019, 669, 520-524.	1.8	18
92	Upconversion of 1.54 <i>î¼</i> m radiation in Er ³⁺ doped fluoride-based materials for c-Si solar cell with improved efficiency. EPJ Photovoltaics, 2011, 2, 20601.	1.6	17
93	Theoretical study of optical properties of anti phase domains in GaP. Journal of Applied Physics, 2014, 115, .	2.5	17
94	Enhancement of Copper Indium Gallium Selenide Solar Cells Using Europium Complex as Photon Downshifter. Advanced Optical Materials, 2016, 4, 1846-1853.	7.3	17
95	Identification of surface and volume hot-carrier thermalization mechanisms in ultrathin GaAs layers. Journal of Applied Physics, 2020, 128, 193102.	2.5	17
96	Hot carrier dynamics in InGaAs/GaAsP quantum well solar cells. , 2011, , .		16
97	Review of the mechanisms for the phonon bottleneck effect in Ill–V semiconductors and their application for efficient hot carrier solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30, 581-596.	8.1	16
98	Indium-Based Interface Chemical Engineering by Electrochemistry and Atomic Layer Deposition for Copper Indium Diselenide Solar Cells. Japanese Journal of Applied Physics, 2001, 40, 6065-6068.	1.5	15
99	Studies of buried interfaces Cu(In,Ga)Se2/CdS XPS and electrical investigations. Thin Solid Films, 2003, 431-432, 289-295.	1.8	15
100	Dielectric function of zinc oxide thin films in a broad spectral range. Thin Solid Films, 2014, 571, 593-596.	1.8	15
101	Cu(In,Ga)Se 2 mesa diodes for the study of edge recombination. Thin Solid Films, 2015, 582, 258-262.	1.8	15
102	Generalized Reciprocity Relations in Solar Cells with Voltage-Dependent Carrier Collection: Application to <i>p</i> - <i>i</i> - <i>n</i> Junction Devices. Physical Review Applied, 2019, 11, .	3.8	15
103	XPS and electrical studies of buried interfaces in Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2002, 403-404, 425-431.	1.8	14
104	Thermoelectric field effects in low-dimensional structure solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 101-106.	2.7	14
105	A theoretical investigation of the dye-redox mediator interaction in dye-sensitized photovoltaic cells. Chemical Physics Letters, 2003, 371, 378-385.	2.6	14
106	Towards Better Understanding of High Efficiency Cd-free CIGS Solar Cells Using Atomic Layer Deposited Indium Sulfide Buffer Layers. Materials Research Society Symposia Proceedings, 2003, 763, 991.	0.1	14
107	Electrochemical Cementation Phenomena on Polycrystalline Molybdenum Thin Films from Cu(II)–In(III)–Se(IV) Acidic Solutions. Journal of the Electrochemical Society, 2007, 154, D383.	2.9	14
108	Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se_2 solar cells with Lambertian back reflector. Optics Express, 2013, 21, 2563.	3.4	14

#	Article	IF	CITATIONS
109	Optical Imaging of Light-Induced Thermopower in Semiconductors. Physical Review Applied, 2016, 5, .	3.8	14
110	Solvent Effect on ZnO Thin Films Prepared by Spray Pyrolysis. , 1991, , 609-612.		13
111	Influence of the Composition on the Copper Diffusion in Copper Sulfides Study by Impedance Spectroscopy. Journal of the Electrochemical Society, 1999, 146, 4666-4671.	2.9	13
112	NMR studies of CuInS2 and CuInSe2 crystals grown by the Bridgman method. Solid State Communications, 2000, 113, 527-532.	1.9	13
113	A Novel Approach for the Electrodeposition of Epitaxial Films of ZnSe on (111) and (100) InP Using Dimethylsulfoxide as a Solvent. Electrochemical and Solid-State Letters, 2004, 7, C75.	2.2	13
114	In-Depth Chemical and Optoelectronic Analysis of Triple-Cation Perovskite Thin Films by Combining XPS Profiling and PL Imaging. ACS Applied Materials & Interfaces, 2022, 14, 34228-34237.	8.0	13
115	Electron spin resonance studies of Cu(In,Ga)Se2 thin films. Thin Solid Films, 2003, 431-432, 167-171.	1.8	12
116	Solution Processing Route to High Efficiency Culn(S,Se) ₂ Solar Cells. Journal of Nano Research, 2009, 4, 79-89.	0.8	12
117	Phonon lifetime in SiSn and its suitability for hot-carrier solar cells. Applied Physics Letters, 2014, 104,	3.3	12
118	Experimental Demonstration of Optically Determined Solar Cell Current Transport Efficiency Map. IEEE Journal of Photovoltaics, 2016, 6, 528-531.	2.5	12
119	Impact of Electron–Phonon Scattering on Optical Properties of CH ₃ NH ₃ PbI ₃ Hybrid Perovskite Material. ACS Omega, 2019, 4, 21487-21493.	3.5	12
120	Erbium-doped yttria thin films prepared by metal organic decomposition for up-conversion. Thin Solid Films, 2013, 537, 42-48.	1.8	11
121	Revisiting the interpretation of biased luminescence: Effects on Cu(In,Ga)Se2 photovoltaic heterostructures. Journal of Applied Physics, 2014, 116, 064504.	2.5	11
122	Investigation of the spatial distribution of hot carriers in quantum-well structures via hyperspectral luminescence imaging. Journal of Applied Physics, 2020, 128, .	2.5	11
123	Comparison of optical and electrical gap of electrodeposited CuIn(S,Se)2 determined by spectral photo response and l–V–T measurements. Thin Solid Films, 2007, 515, 6233-6237.	1.8	10
124	CHAPTER 12. Hot Carrier Solar Cells. RSC Energy and Environment Series, 0, , 379-424.	0.5	10
125	Modeling and Fabrication of Luminescent Solar Concentrators towards Photovoltaic Devices. Energy Procedia, 2014, 60, 173-180.	1.8	10
126	On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices. Applied Physics Letters, 2016, 109, .	3.3	10

#	Article	IF	CITATIONS
127	EuIII -Based Nanolayers as Highly Efficient Downshifters for CIGS Solar Cells. European Journal of Inorganic Chemistry, 2017, 2017, 5318-5326.	2.0	10
128	Influence of Hot-Carrier Extraction from a Photovoltaic Absorber: An Evaporative Approach. Physical Review Applied, 2017, 8, .	3.8	10
129	Cu titration in CuInSe2: exploration of the ternary phase diagram along new tie-lines. Ionics, 1997, 3, 149-154.	2.4	9
130	Efficient Cu(In, Ga)Se ₂ Based Solar Cells Prepared by Electrodeposition. Materials Research Society Symposia Proceedings, 2003, 763, 691.	0.1	9
131	Increasing solar cell efficiencies based on Cu(In,Ga)Se2 after a specific chemical and oxidant treatment. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2551-2554.	0.8	9
132	Interfacial chemistry control in thin film solar cells based on electrodeposited CuIn(S,Se)2. Thin Solid Films, 2007, 515, 6123-6126.	1.8	9
133	Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2009, 517, 2550-2553.	1.8	9
134	Broadband light-trapping in ultra-thin nano-structured solar cells. Proceedings of SPIE, 2013, , .	0.8	9
135	Monolithic Integration of Diluted-Nitride III–V-N Compounds on Silicon Substrates: Toward the III–V/Si Concentrated Photovoltaics. Energy Harvesting and Systems, 2014, 1, .	2.7	9
136	Imaging Electron, Hole, and Ion Transport in Halide Perovskite. Journal of Physical Chemistry C, 2020, 124, 11741-11748.	3.1	9
137	Backside light management of 4-terminal bifacial perovskite/silicon tandem PV modules evaluated under realistic conditions. Optics Express, 2020, 28, 37487.	3.4	9
138	Ion Potential Diagrams for Electrochromic Devices. Journal of the Electrochemical Society, 1998, 145, 4212-4218.	2.9	8
139	Contactless characterization of metastable defects in Cu(In,Ga)Se 2 solar cells using time-resolved photoluminescence. Solar Energy Materials and Solar Cells, 2016, 145, 462-467.	6.2	8
140	Electroluminescence-based quality characterization of quantum wells for solar cell applications. Journal of Crystal Growth, 2017, 464, 94-99.	1.5	8
141	The influence of relative humidity upon Cu(In,Ga)Se2 thin-film surface chemistry: An X-ray photoelectron spectroscopy study. Applied Surface Science, 2022, 576, 151898.	6.1	8
142	63Cu-NMR studies of crystalline and thin-film CuInSe2. Thin Solid Films, 2001, 387, 235-238.	1.8	7
143	Copper indium diselenide solar cells prepared by electrodeposition. , 0, , .		7
144	Cadmium sulfide/indium phosphide as a model system for understanding indium related chemical reactivity at CIGS/CdS interface: XPS and ex situ luminescence investigations. Thin Solid Films, 2005, 480-481, 230-235.	1.8	7

#	Article	IF	CITATIONS
145	Hot carrier solar cells: Challenges and recent progress. , 2010, , .		7
146	Quantitative optical measurement of chemical potentials in intermediate band solar cells. Journal of Photonics for Energy, 2015, 5, 053092.	1.3	7
147	Adaptation of the surface-near Ga content in co-evaporated Cu(In,Ga)Se 2 for CdS versus Zn(S,O)-based buffer layers. Thin Solid Films, 2015, 582, 295-299.	1.8	7
148	Cu depletion on Cu(In,Ga)Se2 surfaces investigated by chemical engineering: An x-ray photoelectron spectroscopy approach. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	7
149	Reply to â€~Ideal solar cell efficiencies'. Nature Photonics, 2021, 15, 165-166.	31.4	7
150	ESR and NMR studies of CulnSe2 crystals having controlled component activities. Journal of Physics and Chemistry of Solids, 2003, 64, 1633-1639.	4.0	6
151	Challenging the Electrodeposition of Multinary Semiconductor Compounds: Case of CulnSe2. ECS Transactions, 2007, 6, 577-585.	0.5	6
152	Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only). Journal of Physics Condensed Matter, 2008, 20, 064226.	1.8	6
153	Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. Proceedings of SPIE, 2012, , .	0.8	6
154	GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell. Proceedings of SPIE, 2015, , .	0.8	6
155	200nm-Thick GaAs solar cells with a nanostructured silver mirror. , 2016, , .		6
156	Insights on energy selective contacts for thermal energy harvesting using double resonant tunneling contacts and numerical modeling. Superlattices and Microstructures, 2016, 100, 749-756.	3.1	6
157	Multiscale in modelling and validation for solar photovoltaics. EPJ Photovoltaics, 2018, 9, 10.	1.6	6
158	An Electronic Ratchet Is Required in Nanostructured Intermediate-Band Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1553-1559.	2.5	6
159	Ultrathin mono-resonant nano photovoltaic device for broadband solar conversion. Optics Express, 2018, 26, A806.	3.4	6
160	Analytical optimization of intermediate band systems: Achieving the best of two worlds. Progress in Photovoltaics: Research and Applications, 2018, 26, 800-807.	8.1	6
161	Thin-film microcells: a new generation of photovoltaic devices. SPIE Newsroom, 0, , .	0.1	6
162	Physical Properties of Electrodeposited Copper Indium Diselenide Thin Films and Junction Realization. Solid State Phenomena, 1994, 37-38, 527-534.	0.3	5

4

#	Article	IF	CITATIONS
163	Qualitative modelling of mixed ionic/electronic devices with ion potential level diagrams. Ionics, 1996, 2, 143-154.	2.4	5
164	Evidence for thermodynamically stable p/n junction, formed by Ag doping of (Hg,Cd)Te. Journal of Crystal Growth, 1996, 161, 90-93.	1.5	5
165	Phase and Interface Stability Issues in Chalcopyrite-Based Thin Film Solar Cells. Materials Research Society Symposia Proceedings, 1997, 485, 127.	0.1	5
166	Micro solar concentrators: Design and fabrication for microcells arrays. AIP Conference Proceedings, 2015, , .	0.4	5
167	From Mono- to Polynuclear Coordination Complexes with a 2,2′-Bipyrimidine-4,4′-dicarboxylate Ligand. Inorganic Chemistry, 2021, 60, 8304-8314.	4.0	5
168	Dynamic temperature effects in perovskite solar cells and energy yield. Sustainable Energy and Fuels, 0, , .	4.9	5
169	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. Advanced Materials, 1999, 11, 957-961.	21.0	5
170	Impact of excitation energy on hot carrier properties in InGaAs multiâ€quantum well structure. Progress in Photovoltaics: Research and Applications, 2022, 30, 1354-1362.	8.1	5
171	Electroless Nucleation and Growth of Cu–Se Phases on Molybdenum in Cu(II)–In(III)–Se(IV) Solutions. Electrochemical and Solid-State Letters, 2007, 10, C1.	2.2	4
172	From Metals to Semiconductors: Challenges in Electrodeposition for Photovoltaic Applications. ECS Transactions, 2009, 19, 1-10.	0.5	4
173	Sub-Gap Modulated Photo Current Spectroscopy performed on Cu(Inx,Ga1â^'x)(Sey,S1â^'y)2 based solar cells. Thin Solid Films, 2009, 517, 2256-2259.	1.8	4
174	Future concepts for photovoltaic energy conversion. , 0, , 238-256.		4
175	Toward high efficiency ultra-thin CICSe based solar cells using light management techniques. , 2012, , .		4
176	Hot Carrier cells: an example of Third Generation photovoltaics. Proceedings of SPIE, 2012, , .	0.8	4
177	Evaluation of micrometer scale lateral fluctuations of transport properties in CIGS solar cells. Proceedings of SPIE, 2013, , .	0.8	4
178	Characterization of Cu(In,Ga)Se\$_{2}\$ Electrodeposited and Co-Evaporated Devices by Means of Concentrated Illumination. IEEE Journal of Photovoltaics, 2014, 4, 693-696.	2.5	4
179	Micrometric investigation of external quantum efficiency in microcrystalline CuInGa(S,Se)2 solar cells. Thin Solid Films, 2014, 565, 32-36.	1.8	4

180 Ultrathin GaAs solar cells with a nanostructured back mirror. , 2015, , .

#	Article	IF	CITATIONS
181	Quasi-Fermi level splitting evaluation based on electroluminescence analysis in multiple quantum-well solar cells for investigating cell performance under concentrated light. Proceedings of SPIE, 2016, , .	0.8	4
182	Transport efficiency imaging in multi-junction solar cells by luminescence analysis. , 2018, , .		4
183	Enhancement of photocurrent in epitaxial lift-off thin-film GaInNAsSb solar cells due to light-confinement structure. Applied Physics Express, 2018, 11, 072301.	2.4	4
184	Current transport efficiency analysis of multijunction solar cells by luminescence imaging. Progress in Photovoltaics: Research and Applications, 2019, 27, 835-843.	8.1	4
185	A hot-carrier assisted InAs/AlGaAs quantum-dot intermediate-band solar cell. Semiconductor Science and Technology, 2019, 34, 084001.	2.0	4
186	Hot-Carrier Solar Cells: Modeling Carrier Transport. , 2019, , 53-92.		4
187	Detailed balance calculations for hot-carrier solar cells: coupling high absorptivity with low thermalization through light trapping. EPJ Photovoltaics, 2019, 10, 1.	1.6	4
188	Mapping Transport Properties of Halide Perovskites via Short-Time-Dynamics Scaling Laws and Subnanosecond-Time-Resolution Imaging. Physical Review Applied, 2021, 16, .	3.8	4
189	Hot-carrier multi-junction solar cells: A synergistic approach. Applied Physics Letters, 2022, 120, .	3.3	4
190	Tailoring the electronic properties of one step electrodeposited CuInSe/sub 2/ films by annealing in Se vapor under controlled activity conditions. Elaboration of efficient CIS/ZnO solar cells. , 0, , .		3
191	Nucleation of Binary Cu-Se Phases and Electrochemical Cementation Mechanism on Polycrystalline Molybdenum Thin Films in Cu(II)-In(III)-Se(IV) Acidic Solutions. ECS Transactions, 2006, 2, 369-378.	0.5	3
192	Trackfree planar solar concentrator system. Proceedings of SPIE, 2012, , .	0.8	3
193	Plasmonic enhancement of up-conversion in ultrathin layers. Proceedings of SPIE, 2012, , .	0.8	3
194	Impact of the deposition conditions of window layers on lowering the metastability effects in Cu(In,Ga)Se2/CBD ZnS-based solar cell. Materials Research Society Symposia Proceedings, 2013, 1538, 145-149.	0.1	3
195	Multijunction photovoltavics: integrating III–V semiconductor heterostructures on silicon. SPIE Newsroom, 2015, , .	0.1	3
196	Optical analysis of the photon recycling effect in InGaAs/GaAsP multiple quantum well solar cell with light trapping structure. , 2016, , .		3
197	Third generation hot carrier solar cells: paths towards innovative energy contacts structures. , 2016, , .		3
198	Electrical characteristics and hot carrier effects in quantum well solar cells. Proceedings of SPIE, 2017, , .	0.8	3

#	Article	IF	CITATIONS
199	Demand response for the promotion of photovoltaic penetration. , 2017, , .		3
200	Advanced Light Trapping for Hot-Carrier Solar Cells. , 2018, , .		3
201	Coupled time resolved and high frequency modulated photoluminescence probing surface passivation of highly doped n-type InP samples. Journal of Applied Physics, 2021, 129, .	2.5	3
202	Non-ideal nanostructured intermediate band solar cells with an electronic ratchet. , 2018, , .		3
203	Advanced analysis for hot-carriers photoluminescence spectrum. , 2020, , .		3
204	Ion potential diagrams as guidelines for stability and performance of electrochromic devices. Ionics, 1997, 3, 420-426.	2.4	2
205	Admittance spectroscopy defect density of electrodeposited CuIn(S,Se) ₂ and its correlation with solar cells performances. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3449-3452.	0.8	2
206	The quest for very high efficiency in Photovoltaic energy conversion. Europhysics News, 2010, 41, 19-22.	0.3	2
207	Cu(In,Ga)Se2 photovoltaic microcells for high efficiency with reduced material usage. Proceedings of SPIE, 2012, , .	0.8	2
208	Luminescence Imaging of Extended Defects in SiC via Hyperspectral Imaging. Materials Science Forum, 0, 717-720, 403-406.	0.3	2
209	Direct imaging of quasi Fermi level splitting in photovoltaic absorbers. , 2014, , .		2
210	InP-based nano solar cells. , 2014, , .		2
211	Micro solar concentrators: Design and fabrication for microcells arrays. , 2015, , .		2
212	Photovoltaic Array Differential Backside Exposure Conditions: Backsheet Degradation and Site Design. , 2017, , .		2
213	Hot Carrier Extraction Using Energy Selective Contacts and Feedback On The Remaining Distribution. , 2018, , .		2
214	Loss analysis in luminescent sheet concentrators: from ideal to real system. EPJ Photovoltaics, 2018, 9, 12.	1.6	2
215	Beneficial impact of a thin tunnel barrier in quantum well intermediate-band solar cell. EPJ Photovoltaics, 2018, 9, 11.	1.6	2
216	Evolution of Cu(In,Ga)Se ₂ surfaces under water immersion monitored by Xâ€ray photoelectron spectroscopy. Surface and Interface Analysis, 2020, 52, 975-979.	1.8	2

#	Article	IF	CITATIONS
217	Optimized Operation of Quantum-Dot Intermediate-Band Solar Cells Deduced from Electronic Transport Modeling. Physical Review Applied, 2020, 13, .	3.8	2
218	A Bayesian approach to luminescent down-conversion. Journal of Chemical Physics, 2021, 154, 014201.	3.0	2
219	Fabrication and optical characterization of ultrathin III-V transferred heterostructures for hot-carrier absorbers. , 2020, , .		2
220	Quasi-Fermi level splitting in InAs quantum-dot solar cells from photoluminescence measurements. , 2020, , .		2
221	Importance of atmospheric aerosol pollutants on the degradation of Al ₂ O ₃ encapsulated Alâ€doped zinc oxide window layers in solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30, 552-566.	8.1	2
222	Formation Energies of Point Defects in Copper Indium Diselenide Using ab initio Methods. Materials Research Society Symposia Proceedings, 2003, 763, 8101.	0.1	1
223	Defect Physics of CuInSe2 for Photovoltaic Applications Using Extended X-ray Absorption Fine Structure (EXAFS). Materials Research Society Symposia Proceedings, 2003, 763, 121.	0.1	1
224	Physics of Cu(In, Ga)Se <inf>2</inf> solar cells in high injection regime. , 2011, , .		1
225	Hot carrier solar cells: The device that did not exist (but should). , 2011, , .		1
226	Front Matter: Volume 8256. , 2012, , .		1
227	Lambertian back reflector in Cu(InGa)Se2solar cell: optical modeling and characterization. , 2013, , .		1
228	Physics of Cu(In,Ga)Se ₂ microcells under ultrahigh illumination intensities. Proceedings of SPIE, 2013, , .	0.8	1
229	Accurate measurement of temperature and electrochemical potential of InGaAsP/InP heterostructures: A first indication of hot carriers solar cell operation. , 2014, , .		1
230	Quantitative imaging of thin films solar cells properties using CulnGaSe <inf>2</inf> microcells. , 2014, , .		1
231	Optical phonon decay in cubic semiconductors: a hot carrier solar cell picture. Proceedings of SPIE, 2014, , .	0.8	1
232	Hyperspectral Imaging of Photovoltaic Conversion. Materials Research Society Symposia Proceedings, 2014, 1670, 57.	0.1	1
233	Multi-stage co-evaporation process for active Ga gradient control in CIGS solar cells. , 2014, , .		1

#	Article	IF	CITATIONS
235	Investigation of carrier collection in multi-quantum well solar cells by luminescence spectra analysis. , 2015, , .		1
236	Structured InP-based nanoantenna for photovoltaics applications. Journal of Photonics for Energy, 2015, 5, 053098.	1.3	1
237	Multi-resonant light trapping in ultrathin CIGS solar cells. , 2016, , .		1
238	Absorption coefficient and non-equilibrium generalized Planck's law for improved hot carrier photoluminescence spectroscopy. , 2016, , .		1
239	Minibands modeling in strain-balanced InGaAs/GaAs/GaAsP cells. , 2017, , .		1
240	Surface reactivity of CIGS absorber on soda-lime and flexible substrates studied by XPS: a global approach of deoxidation, ageing and alkali elements distribution. , 2018, , .		1
241	Reply to "Comment on â€~Optical Imaging of Light-Induced Thermopower in Semiconductors' ― Phy Review Applied, 2018, 9, .	/sical	1
242	Cellules solaires en couches minces à base de CuInSe2. , 2007, , 16-19.	0.1	1
243	Hot-carrier solar cells. SPIE Newsroom, 0, , .	0.1	1
244	Physics of the inter-subband transition in quantum-dot intermediate-band solar cell. , 2020, , .		1
245	Modification of dead layer on surfaces of CuInSe/sub 2/ and its alloys. , 0, , .		0
246	Interface Defects in GIGS-based Solar Cells from Coupled Electrical and Chemical Points of View. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	0
247	Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only). Journal of Physics Condensed Matter, 2008, 20, 064224.	1.8	0
248	Hot carrier solar cell efficiency simulation with carrier extraction through non ideal selective contacts. , 2010, , .		0
249	Ultrathin Cu(In, Ga)Se <inf>2</inf> solar cells. , 2011, , .		0
250	Hot carrier solar cells: Controlling thermalization in ultra thin devices. , 2011, , .		0
251	Solar Cells solar cell : Very High Efficiencies Approaches solar cell very high efficiencies approaches. , 2013, , 358-377.		0
252	Structural and optical properties of (In,Ga)As/GaP quantum dots and (GaAsPN/GaPN) diluted-nitride nanolayers coherently grown onto GaP and Si substrates for photonics and photovoltaics applications. , 2013, , .		0

#	Article	IF	CITATIONS
253	Thin film microcells for concentrated applications. , 2013, , .		0
254	Front Matter Volume 8620. , 2013, , .		0
255	Hyperspectral Imaging of Photovoltaic Conversion – ERRATUM. Materials Research Society Symposia Proceedings, 2014, 1670, 1.	0.1	0
256	Four-fold MQWs absorption enhancement in a 430 nm thick InGaAs/GaAsP MQWs solar cell. , 2014, , .		0
257	An innovative concentrator system based on Cu(In,Ga)Se <inf>2</inf> microcells. , 2014, , .		0
258	Characterization of Photovoltaic Absorbers for High Throughput Processing. Materials Research Society Symposia Proceedings, 2014, 1709, 24.	0.1	0
259	Front Matter: Volume 8981. , 2014, , .		0
260	Cu(In,Ga)Se2mesa microdiodes: study of edge recombination and behaviour under concentrated sunlight. , 2014, , .		0
261	How does energy filtering improve quantum-dot based photovoltaic devices. , 2015, , .		0
262	Depolarization effect in rareâ€earth doped Y ₂ O ₃ films in blue and UV spectral range. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 600-604.	0.8	0
263	Optoelectronic characterization of polycrystalline solar cells using time-resolved biased luminescence techniques. , 2015, , .		0
264	All optical IBSC characterization method. , 2016, , .		0
265	Influence of different electron and holes effective masses, temperatures and electrochemical potentials on the hot carrier solar cell efficiency. , 2016, , .		0
266	Micrometric mapping of absolute trapping defects density using quantitative luminescence imaging. , 2016, , .		0
267	Design and fabrication of a micro CPV system based on Cu(In,Ga)Se2microcells array. , 2016, , .		Ο
268	Local transport properties investigation by correlating hyperspectral and confocal luminescence images. Proceedings of SPIE, 2016, , .	0.8	0
269	Characterisation of multi-junction solar cells by mapping of the carrier transport efficiency using luminescence emission. , 2017, , .		0
270	Optical contactless measurement of semiconductor thermoelectric transport properties (Conference Presentation). , 2017, , .		0

#	Article	IF	CITATIONS
271	Cathodoluminescence mapping for the determination of n-type doping in single GaAs nanowires. , 2017, , .		0
272	Progress towards double-junction InGaN solar cell. , 2017, , .		0
273	200nm-thick GaAs solar cells with a nanostructured silver mirror. , 2017, , .		0
274	Quantitative optoelectronic measurements of carrier thermodynamics properties in quantum well hot carrier solar cell. , 2017, , .		0
275	Predicting Power Loss Due to Module Mismatch in Utility-Scale Photovoltaic Systems. , 2017, , .		0
276	Application of Mapping Spectroscopic Ellipsometry for CdSe/CdTe Solar Cells: Optimization of Low-Temperature Processed Devices with All-Sputtered Semiconductors. , 2017, , .		0
277	Reduction of V <inf>oc</inf> induced by the electron-phonon scattering in GaAs and CH <inf>3</inf> NH <inf>3</inf> PbI <inf>3</inf> . , 2018, , .		0
278	Epitaxial Lift-Off of Ultrathin Heterostructures for Hot-Carrier Solar Cell Applications. , 2019, , .		0
279	Quantitative optical assessment of electronic and photonic properties. , 2019, , .		0
280	Hot carriers and thermalization properties of type-II In As/AlAsSb MQW and superlattice solar cells. , 2021, , .		0
281	Impact of the excitation wavelength on the properties of photo-generated hot carriers in InGaAs MQW. , 2021, , .		0
282	Demain, le PhotovoltaÃ ⁻ que : Les révolutions anticipées sur les filières et les concepts. , 2007, , 19-22.	0.1	0
283	Solar Cells solar cell : Very High Efficiencies Approaches solar cell very high efficiencies approaches. , 2012, , 9412-9431.		0
284	Absorption coefficient and non-equilibrium generalized Planck's law for improved hot carrier photoluminescence spectroscopy. , 2017, , .		0
285	Quantitative analysis of InAs quantum dot solar cells by photoluminescence spectroscopy. , 2018, , .		0
286	Light absorption enhancement in ultra-thin layers for hot-carrier solar cells: first developments towards the experimental demonstration of an enhanced hot-carrier effect with light trapping. , 2019, , .		0
287	Experimental investigation of performances enhancement in hot carrier solar cells: improvements and perspectives (Conference Presentation). , 2019, , .		0
288	Multi-dimensional luminescence imaging: accessing transport properties. , 2019, , .		0

#	Article	IF	CITATIONS
289	Phononic Engineering for Hot Carrier Solar Cells. Advances in Chemical and Materials Engineering Book Series, 0, , 214-242.	0.3	0
290	21. PhotovoltaÃ ⁻ que à très haut rendement de conversion. , 0, , 172-173.		0
291	Hot-carrier multijunction solar cells: sensitivity and resilience to nonidealities. Journal of Photonics for Energy, 2022, 12, .	1.3	0