
Yoshio Miki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235602/publications.pdf Version: 2024-02-01

Υσεμίο Μικι

#	Article	IF	CITATIONS
1	Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Science, 2004, 95, 866-871.	1.7	518
2	DYRK2 Is Targeted to the Nucleus and Controls p53 via Ser46 Phosphorylation in the Apoptotic Response to DNA Damage. Molecular Cell, 2007, 25, 725-738.	4.5	258
3	JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nature Cell Biology, 2005, 7, 278-285.	4.6	228
4	Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nature Cell Biology, 2020, 22, 1064-1075.	4.6	182
5	Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nature Communications, 2018, 9, 4083.	5.8	179
6	Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO Journal, 2003, 22, 1431-1441.	3.5	139
7	DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. Journal of Clinical Investigation, 2012, 122, 859-872.	3.9	114
8	The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Science, 2010, 101, 831-835.	1.7	99
9	<scp>THBS</scp> 1 is induced by <scp>TGFB</scp> 1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2016, 45, 730-739.	1.4	90
10	BRCA1 gene: function and deficiency. International Journal of Clinical Oncology, 2018, 23, 36-44.	1.0	83
11	Roles of Interleukin-6 and Parathyroid Hormone-Related Peptide in Osteoclast Formation Associated with Oral Cancers. American Journal of Pathology, 2010, 176, 968-980.	1.9	71
12	Identification of a predictive gene expression signature of cervical lymph node metastasis in oral squamous cell carcinoma. Cancer Science, 2007, 98, 740-746.	1.7	66
13	ATM Augments Nuclear Stabilization of DYRK2 by Inhibiting MDM2 in the Apoptotic Response to DNA Damage. Journal of Biological Chemistry, 2010, 285, 4909-4919.	1.6	59
14	Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE, 2016, 11, e0161163.	1.1	53
15	BRCA2 and Nucleophosmin Coregulate Centrosome Amplification and Form a Complex with the Rho Effector Kinase ROCK2. Cancer Research, 2011, 71, 68-77.	0.4	51
16	Interference with BRCA2, which localizes to the centrosome during S and early M phase, leads to abnormal nuclear division. Biochemical and Biophysical Research Communications, 2007, 355, 34-40.	1.0	47
17	CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity. Biochemical and Biophysical Research Communications, 2021, 550, 56-61.	1.0	43
18	A functional genome-wide RNAi screen identifies TAF1 as a regulator for apoptosis in response to genotoxic stress. Nucleic Acids Research, 2008, 36, 5250-5259.	6.5	39

Үозніо Мікі

#	Article	IF	CITATIONS
19	BRCA2 interacts with the cytoskeletal linker protein plectin to form a complex controlling centrosome localization. Cancer Science, 2009, 100, 2115-2125.	1.7	39
20	BRCA2 Phosphorylated by PLK1 Moves to the Midbody to Regulate Cytokinesis Mediated by Nonmuscle Myosin IIC. Cancer Research, 2014, 74, 1518-1528.	0.4	35
21	Loss of CtIP disturbs homologous recombination repair and sensitizes breast cancer cells to PARP inhibitors. Oncotarget, 2016, 7, 7701-7714.	0.8	35
22	Crosstalk of DNA doubleâ€strand break repair pathways in poly(ADPâ€ribose) polymerase inhibitor treatment of breast cancer susceptibility gene 1/2â€mutated cancer. Cancer Science, 2018, 109, 893-899.	1.7	34
23	Functional pathway characterized by gene expression analysis of supraclavicular lymph node metastasis-positive breast cancer. Journal of Human Genetics, 2007, 52, 271-279.	1.1	32
24	Identification of dihydropyrimidinaseâ€related protein 4 as a novel target of the p53 tumor suppressor in the apoptotic response to DNA damage. International Journal of Cancer, 2011, 128, 1524-1531.	2.3	30
25	<scp>LAMC</scp> 2 is a predictive marker for the malignant progression of leukoplakia. Journal of Oral Pathology and Medicine, 2017, 46, 223-231.	1.4	30
26	Identification of the Molecular Mechanisms for Dedifferentiation at the Invasion Front of Colorectal Cancer by a Gene Expression Analysis. Clinical Cancer Research, 2008, 14, 7215-7222.	3.2	29
27	Periostin suppression induces decorin secretion leading to reduced breast cancer cell motility and invasion. Scientific Reports, 2014, 4, 7069.	1.6	28
28	Prevalence of disease-causing genes in Japanese patients with BRCA1/2-wildtype hereditary breast and ovarian cancer syndrome. Npj Breast Cancer, 2020, 6, 25.	2.3	21
29	D4S234E, a novel p53-responsive gene, induces apoptosis in response to DNA damage. Experimental Cell Research, 2010, 316, 2849-2858.	1.2	17
30	BRCA1-Mediated Ubiquitination Inhibits Topoisomerase IlαActivity in Response to Oxidative Stress. Antioxidants and Redox Signaling, 2008, 10, 939-950.	2.5	15
31	FKBP51 regulates cell motility and invasion via RhoA signaling. Cancer Science, 2017, 108, 380-389.	1.7	15
32	BRCA2 mediates centrosome cohesion via an interaction with cytoplasmic dynein. Cell Cycle, 2016, 15, 2145-2156.	1.3	13
33	Mutation status of RAD 51C , PALB 2 and BRIP 1 in 100 Japanese familial breast cancer cases without BRCA 1 and BRCA 2 mutations. Cancer Science, 2017, 108, 2287-2294.	1.7	13
34	Centrosomal BRCA2 is a target protein of membrane type-1 matrix metalloproteinase (MT1-MMP). Biochemical and Biophysical Research Communications, 2014, 443, 1148-1154.	1.0	12
35	Estradiol/GPER affects the integrity of mammary duct-like structures in vitro. Scientific Reports, 2020, 10, 1386.	1.6	11
36	Novel BRCA2-interacting protein BJ-HCC-20A inhibits the induction of apoptosis in response to DNA damage. Cancer Science, 2008, 99, 747-754.	1.7	9

Уозніо Мікі

#	Article	IF	CITATIONS
37	Centrosomes at M phase act as a scaffold for the accumulation of intracellular ubiquitinated proteins. Cell Cycle, 2014, 13, 1928-1937.	1.3	8
38	Identification of Evi-1 as a novel effector of PKCÎ′ in the apoptotic response to DNA damage. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 285-294.	0.9	5
39	Regulation of Intrinsic Functions of PD-L1 by Post-Translational Modification in Tumors. Frontiers in Oncology, 2022, 12, 825284.	1.3	3
40	Introduction and characterization of a polymeraseâ€dead point mutation into the <i>POLK</i> gene in vertebrates. FEBS Letters, 2009, 583, 661-664.	1.3	2
41	Gene expression-based diagnosis of efficacy of chemotherapy for breast cancer. Breast Cancer, 2010, 17, 97-102.	1.3	1
42	Integrative cancer genomics in the era of precision cancer medicine. Journal of Human Genetics, 2021, 66, 843-843.	1.1	0
43	Molecular Prediction of Therapeutic Response and Adverse Effect of Chemotherapy in Breast Cancer. , 2009, , 177-182.		Ο
44	BRCA2 represses the transcriptional activity of pS2 by E2-ERα. Biochemical and Biophysical Research Communications, 2022, 588, 75-82.	1.0	0
45	The BRCA2 missense mutation K2497R suppressed self-degradation and increased ATP production and cell proliferation. Biochemical and Biophysical Research Communications, 2022, 590, 27-33.	1.0	0