
Rupam Kataki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235598/publications.pdf Version: 2024-02-01

ΡΠΟΛΜ ΚΑΤΑΚΙ

#	Article	IF	CITATIONS
1	Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 2011, 88, 3307-3312.	10.1	284
2	Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures. Ecological Engineering, 2016, 97, 444-451.	3.6	126
3	Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bioresource Technology, 2017, 244, 1465-1469.	9.6	117
4	Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresource Technology, 2015, 188, 265-272.	9.6	112
5	Fuelwood characteristics of some indigenous woody species of north-east India. Biomass and Bioenergy, 2001, 20, 17-23.	5.7	111
6	Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions. Bioresource Technology, 2015, 178, 83-89.	9.6	105
7	Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renewable Energy, 2016, 98, 245-253.	8.9	105
8	Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresource Technology, 2013, 139, 66-72.	9.6	89
9	Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Bioresource Technology, 2014, 165, 336-342.	9.6	78
10	Fuelwood characteristics of indigenous tree species of north-east India. Biomass and Bioenergy, 2002, 22, 433-437.	5.7	75
11	Pyrolysis of jute dust: effect of reaction parameters and analysis of products. Journal of Material Cycles and Waste Management, 2014, 16, 449-459.	3.0	68
12	Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: Optimization through response surface methodology. Journal of Environmental Chemical Engineering, 2017, 5, 5528-5539.	6.7	63
13	Fabrication of biochars obtained from valorization of biowaste and evaluation of its physicochemical properties. Bioresource Technology, 2017, 242, 324-328.	9.6	59
14	Organic amendments: Effect on carbon mineralization and crop productivity in acidic soil. Journal of Cleaner Production, 2017, 152, 157-166.	9.3	53
15	Pyrolysis and kinetic analyses of a perennial grass (Saccharum ravannae L.) from north-east India: Optimization through response surface methodology and product characterization. Bioresource Technology, 2018, 253, 304-314.	9.6	49
16	Soil organic carbon dynamics in wheat - Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. Journal of Cleaner Production, 2018, 201, 471-480.	9.3	49
17	Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: An agro-processing wastes. Bioresource Technology, 2017, 242, 36-44.	9.6	43
18	Evaluation of bio-asphalt binders modified with biochar: a pyrolysis by-product of <i>Mesua ferrea</i> seed cover waste. Cogent Engineering, 2018, 5, 1548534.	2.2	35

Rupam Κατακι

#	Article	IF	CITATIONS
19	Removal of Cr(VI) ions from the aqueous solution through nanoscale zero-valent iron (nZVI) Magnetite Corn Cob Silica (MCCS): A bio-waste based water purification perspective. Groundwater for Sustainable Development, 2018, 7, 470-476.	4.6	32
20	Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover. Water Science and Technology, 2018, 77, 638-646.	2.5	31
21	Complete utilization of non-edible oil seeds of Cascabela thevetia through a cascade of approaches for biofuel and by-products. Bioresource Technology, 2016, 213, 111-120.	9.6	28
22	Bioelectricity from sugarcane bagasse co-generation in India‒An assessment of resource potential, policies and market mobilization opportunities for the case of Uttar Pradesh. Journal of Cleaner Production, 2018, 182, 1012-1023.	9.3	26
23	Willingness among food consumers to recycle human urine as crop fertiliser: Evidence from a multinational survey. Science of the Total Environment, 2021, 765, 144438.	8.0	25
24	Production and Characterization of Bio-Oil Produced from Ipomoea carnea Bio-Weed. Bioenergy Research, 2015, 8, 1212-1223.	3.9	23
25	TGA-FTIR analysis of Upper Assam oil shale, optimization of lab-scale pyrolysis process parameters using RSM. Journal of Analytical and Applied Pyrolysis, 2018, 135, 397-405.	5.5	23
26	Sustainable synthesis of N and P co-doped porous amorphous carbon using oil seed processing wastes. Materials Letters, 2016, 173, 145-148.	2.6	19
27	Tea factory waste as a feedstock for thermo-chemical conversion to biofuel and biomaterial. Materials Today: Proceedings, 2018, 5, 23413-23422.	1.8	18
28	Sidestreams From Bioenergy and Biorefinery Complexes as a Resource for Circular Bioeconomy. , 2018, , 85-125.		18
29	Production of bio-oil from coir pith via pyrolysis: kinetics, thermodynamics, and optimization using response surface methodology. Biomass Conversion and Biorefinery, 2021, 11, 2881-2898.	4.6	17
30	Feedstock Suitability for Thermochemical Processes. , 2015, , 31-74.		14
31	Pyrolysis of Dried Black Liquor Solids and Characterization of the Bio-Char and Bio-Oil. Materials Today: Proceedings, 2018, 5, 23193-23202.	1.8	12
32	Comparative assessment of artificial neural network and response surface methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Conversion and Biorefinery, 2020, , 1.	4.6	12
33	Optimization of pyrolyzer design to produce maximum bio-oil from Saccharum ravannae L.: an integrated approach using experimental data and artificial intelligence. Biomass Conversion and Biorefinery, 2019, 9, 727-736.	4.6	9
34	Biohydrogen Production Scenario for Asian Countries. , 2017, , 207-235.		7
35	Waste Valorization to Fuel and Chemicals Through Pyrolysis: Technology, Feedstock, Products, and Economic Analysis. Energy, Environment, and Sustainability, 2018, , 477-514.	1.0	7
36	Detailed physicochemical and thermochemical investigation of Upper Assam oil shale. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1221-1232.	3.6	7

Rupam Катакі

#	Article	IF	CITATIONS
37	Agro-residues and weed biomass as a source bioenergy: Implications for sustainable management and valorization of low-value biowastes. International Journal of Renewable Energy Development, 2019, 8, 243-251.	2.4	6
38	Economical aspect in biomass to biofuel production. , 2022, , 395-427.		6
39	A comprehensive study to understand removal efficiency for Cr6+ using magnetic and activated biochar through response surface methodology. Biomass Conversion and Biorefinery, 2024, 14, 5973-5987.	4.6	5
40	Assessment of kinetic parameters, mechanisms and thermodynamics of Tithonia diversifolia pyrolysis. Biomass Conversion and Biorefinery, 2023, 13, 2703-2718.	4.6	5
41	Responses of Soil Enzymes and Carbon Mineralization to Applied Organic Amendments: A Short-term Study in Acidic Sandy Loam Soil. Journal of the Indian Society of Soil Science, 2017, 65, 283.	0.2	5
42	Biochar Production and Application in Forest Soils-A Critical Review. Phyton, 2019, 88, 349-365.	0.7	5
43	Rural biorefinery: A viable solution for production of fuel and chemicals in rural India. , 2019, , 21-47.		4
44	Valorization of agricultural wastes for multidimensional use. , 2020, , 41-78.		4
45	Use of Biochar in Sustainable Agriculture. , 2019, , 501-528.		4
46	Production and evaluation of physicochemical, rheological, and tribological properties of Cucurbita pepo L. seed oil. Biomass Conversion and Biorefinery, 2023, 13, 1101-1114.	4.6	3
47	Various conversion techniques for the recovery of value-added products from tea waste. , 2021, , 237-265.		3
48	Agricultural WastesÂas Feedstock for Thermo-Chemical Conversion: Products Distribution and Characterization. , 2020, , 115-128.		3
49	An Assessment on Indian Government Initiatives and Policies for the Promotion of Biofuels Implementation, and Commercialization Through Private Investments. , 2017, , 489-515.		2
50	Cogeneration of Heat and Electricity from Biomass in India: Current Status and Future Challenges. , 2017, , 135-164.		2
51	Biodiesel production from tea seed oil. AIP Conference Proceedings, 2018, , .	0.4	2
52	Effect of Biochar on Soil Respiration from a Semi-evergreen, Moist Deciduous Forest Soil. International Journal of Geosynthetics and Ground Engineering, 2020, 6, 1.	2.0	2
53	Attitudes of food consumers at universities towards recycling human urine as crop fertiliser: A multinational survey dataset. Data in Brief, 2021, 35, 106794.	1.0	2
54	Characterization and Evaluation of Energy Properties of Pellets produced from Coir pith, Saw dust and Ipomoea carnea and their blends. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-18.	2.3	2

RUPAM ΚΑΤΑΚΙ

#	Article	IF	CITATIONS
55	Utilization of nonedible oilseeds in a biorefinery approach with special emphasis on rubber seeds. , 2020, , 311-336.		2
56	Remediation of heavy metal contaminated soil: Role of biochar. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 39-63.	0.5	2
57	Efficacy of biochar application on seed germination and early growth of forest tree species in semi-evergreen, moist deciduous forest. Forests Trees and Livelihoods, 2020, 29, 158-175.	1.2	1
58	Weeds as a renewable bioresource. , 2022, , 437-461.		1
59	Role of pyrolysis temperature on application dose of rice straw biochar as soil amendment. Environmental Sustainability, 2022, 5, 119-128.	2.8	1
60	Biomass Resources for Biofuel Production in Northeast India. , 2016, , 127-151.		0
61	Trees as sources of livelihood and fuelwood: A case study of an eastern Himalayan village. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 398-405.	2.3	0
62	Biogas and Fuel Cell as Vehicular Fuel in India. , 2017, , 87-133.		0
63	Influence of TemperatureÂon Quality and Yield of Pyrolytic Products of Biofuel Process Wastes. , 2020, , 129-142.		0
64	Comparison of Various Solar Radiation Data Sources for Feasibility Study of Parabolic Trough Collector Power Plant in Assam. Lecture Notes in Mechanical Engineering, 2020, , 1437-1445.	0.4	0
65	A Biorefinery Based Zero-Waste Utilization of Non-edible Oilseeds for Biodiesel and Biofuel Production Along with Chemicals and Biomaterials. Clean Energy Production Technologies, 2020, , 21-55.	0.5	0