
Kerstin Länge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235513/publications.pdf Version: 2024-02-01

KEDSTIN LÃNCE

#	Article	IF	CITATIONS
1	Surface acoustic wave biosensors: a review. Analytical and Bioanalytical Chemistry, 2008, 391, 1509-1519.	1.9	677
2	Revisiting lab-on-a-chip technology for drug discovery. Nature Reviews Drug Discovery, 2012, 11, 620-632.	21.5	422
3	Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods, 2011, 3, 2681.	1.3	298
4	An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab on A Chip, 2009, 9, 354-356.	3.1	188
5	Biosensors with label-free detection designed for diagnostic applications. Analytical and Bioanalytical Chemistry, 2010, 398, 2403-2412.	1.9	118
6	Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. Npj Flexible Electronics, 2019, 3, .	5.1	87
7	A Surface Acoustic Wave Biosensor Concept with Low Flow Cell Volumes for Label-Free Detection. Analytical Chemistry, 2003, 75, 5561-5566.	3.2	75
8	Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Biosensors and Bioelectronics, 2006, 22, 227-232.	5.3	73
9	Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review. Sensors, 2019, 19, 5382.	2.1	72
10	Chemical modification of parylene C coatings for SAW biosensors. Sensors and Actuators B: Chemical, 2007, 125, 441-446.	4.0	53
11	Microfluidic integration for electrochemical biosensor applications. Current Opinion in Electrochemistry, 2021, 29, 100755.	2.5	34
12	Improvement of Surface Acoustic Wave Gas and Biosensor Response Characteristics Using a Capacitive Coupling Technique. Analytical Chemistry, 2004, 76, 3837-3840.	3.2	33
13	Biosensors for Diagnostic Applications. Advances in Biochemical Engineering/Biotechnology, 2011, 133, 115-148.	0.6	31
14	Investigation of initial pellicle formation on modified titanium dioxide (TiO2) surfaces by reflectometric interference spectroscopy (RIfS) in a model system. Dental Materials, 2004, 20, 814-822.	1.6	30
15	Tacky cyclic olefin copolymer: a biocompatible bonding technique for the fabrication of microfluidic channels in COC. Lab on A Chip, 2016, 16, 1561-1564.	3.1	30
16	Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light: Science and Applications, 2021, 10, 64.	7.7	27
17	Surface Acoustic Wave (SAW) Biosensor for Rapid and Label-Free Detection of Penicillin G in Milk. Food Analytical Methods, 2014, 7, 430-437.	1.3	25
18	Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation. Sensors, 2015, 15, 11873-11888.	2.1	22

Kerstin Läge

#	Article	IF	CITATIONS
19	On-Line Monitoring of Polymer Deposition for Tailoring the Waveguide Characteristics of Love-Wave Biosensors. Langmuir, 2004, 20, 2315-2319.	1.6	21
20	Label-free detection of breast cancer marker HER-2/neu with an acoustic biosensor. Procedia Engineering, 2010, 5, 914-917.	1.2	21
21	Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system. Biomedical Microdevices, 2011, 13, 909-922.	1.4	18
22	Deposition of ultrathin parylene C films in the range of 18nm to 142nm: Controlling the layer thickness and assessing the closeness of the deposited films. Thin Solid Films, 2012, 520, 4884-4888.	0.8	17
23	Characterization of antibodies against benzo[a]pyrene with thermodynamic and kinetic constants. Talanta, 2002, 56, 1153-1161.	2.9	16
24	Surface modification of an acoustic biosensor allowing the detection of low concentrations of cancer markers. Analytical Biochemistry, 2012, 420, 188-190.	1.1	16
25	Surface Acoustic Wave (SAW) Biosensors: Coupling of Sensing Layers and Measurement. Methods in Molecular Biology, 2013, 949, 491-505.	0.4	16
26	Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors. Sensors, 2017, 17, 2529.	2.1	16
27	Microfluidic Impedance Biosensor Chips Using Sensing Layers Based on DNA-Based Self-Assembled Monolayers for Label-Free Detection of Proteins. Biosensors, 2021, 11, 80.	2.3	16
28	Rapid bonding of polydimethylsiloxane to stereolithographically manufactured epoxy components using a photogenerated intermediary layer. Lab on A Chip, 2013, 13, 2268.	3.1	15
29	Influence of intermediate aminodextran layers on the signal response of surface acoustic wave biosensors. Analytical Biochemistry, 2008, 377, 170-175.	1.1	14
30	Polymer coating behavior of Rayleigh-SAW resonators with gold electrode structure for gas sensor applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 157-166.	1.7	13
31	Biosensors coated with sulfated polysaccharides for the detection of hepatocyte growth factor/scatter factor in cell culture medium. Biosensors and Bioelectronics, 2010, 26, 1706-1709.	5.3	13
32	Acoustic Biosensors Coated With Phosphorylcholine Groups for Label-Free Detection of Human C-Reactive Protein in Serum. IEEE Sensors Journal, 2015, 15, 4388-4392.	2.4	13
33	Influence of intermediate hydrogel layer and amount of binding sites on the signal response of surface acoustic wave biosensors. Sensors and Actuators B: Chemical, 2009, 142, 39-43.	4.0	10
34	Influence of Preparative Carboxylation Steps on the Analyte Response of an Acoustic Biosensor. IEEE Sensors Journal, 2009, 9, 2033-2034.	2.4	9
35	Polysiloxane layers created by sol–gel and photochemistry: ideal surfaces for rapid, low-cost and high-strength bonding of epoxy components to polydimethylsiloxane. Lab on A Chip, 2015, 15, 1772-1782.	3.1	9
36	Polymer Structures on Surface Acoustic Wave Biosensors. Procedia Technology, 2017, 27, 35-36.	1.1	9

Kerstin Läge

#	Article	IF	CITATIONS
37	Flow injection immunotitration: extended working range for inhibition type immunodetection. Analytica Chimica Acta, 1999, 399, 275-286.	2.6	5
38	Long-term capability of polymer-coated surface transverse wave sensors for distinguishing vapors of similar hydrocarbons. Sensors and Actuators B: Chemical, 2018, 274, 560-564.	4.0	4
39	Synthesis and application of photo curable perfluoropolyethers as new material for microfluidics. Procedia Engineering, 2010, 5, 866-869.	1.2	3
40	Localized protein immobilization on microstructured polymeric surfaces for diagnostic applications. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	3
41	Surface acoustic wave biosensors for biomolecular interaction analysis. , 0, , .		1
42	Biosensor packaging — adaptation of the surface modification procedure. Procedia Engineering, 2010, 5, 363-366.	1.2	1
43	Influence of Surface Preparation Parameters on the Signal Response of an Acoustic Biosensor for the Detection of a Breast Cancer Marker. IEEE Sensors Journal, 2012, 12, 1647-1648.	2.4	1
44	Flexible Carbon-based Urea Sensor by Laser Induced Carbonisation of Polyimide. , 2018, , .		1
45	Rapid Prototyping of Moulds for PDMS-based Microfluidic Chips. Current Directions in Biomedical Engineering, 2021, 7, 255-259.	0.2	1
46	Rapid bonding of polydimethylsiloxane (PDMS) to various stereolithographically (STL) structurable epoxy resins using photochemically cross-linked intermediary siloxane layers. , 2014, , .		0
47	Surface Modification Procedure for Biosensor Chips Made of Chemically Sensitive Polymers. Procedia Technology, 2017, 27, 165-166.	1.1	0
48	Microfluidic impedance biosensor chip with DNA-based self-assembled monolayers for label-free detection of cardiac biomarker troponin I. , 2020, 60, .		0