Paula Elomaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/723525/publications.pdf

Version: 2024-02-01

68 papers

3,867 citations

36 h-index 60 g-index

70 all docs

70 docs citations

times ranked

70

3040 citing authors

#	Article	IF	CITATIONS
1	Understanding capitulum development: Gerbera hybrida inflorescence meristem as an experimental system. Capitulum, 2022, 1 , .	0.1	1
2	Phyllotaxis without symmetry: what can we learn from flower heads?. Journal of Experimental Botany, 2022, 73, 3319-3329.	2.4	9
3	Repatterning of the inflorescence meristem in Gerbera hybrida after wounding. Journal of Plant Research, 2021, 134, 431-440.	1.2	2
4	Don't be fooled: false flowers in Asteraceae. Current Opinion in Plant Biology, 2021, 59, 101972.	3.5	14
5	Phyllotactic patterning of gerbera flower heads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
6	TCP and MADS-Box Transcription Factor Networks Regulate Heteromorphic Flower Type Identity in <i>Gerbera hybrida</i> . Plant Physiology, 2020, 184, 1455-1468.	2.3	33
7	My favourite flowering image: a capitulum of Asteraceae. Journal of Experimental Botany, 2019, 70, e6496-e6498.	2.4	1
8	Effects of LED light spectra on lettuce growth and nutritional composition. Lighting Research and Technology, 2018, 50, 880-893.	1.2	15
9	Evolutionary diversification of <i>CYC/TB1</i> a€like TCP homologs andÂtheir recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytologist, 2018, 220, 317-331.	3.5	22
10	Flower heads in Asteraceaeâ€"recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Horticulture Research, 2018, 5, 36.	2.9	50
11	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	9.4	221
12	Dissecting functions of <i><scp>SEPALLATA</scp></i> â€like <scp>MADS</scp> box genes in patterning of the pseudanthial inflorescence of <i>Gerbera hybrida</i> . New Phytologist, 2017, 216, 939-954.	3.5	46
13	Altered regulation of TERMINAL FLOWER 1 causes the unique vernalisation response in an arctic woodland strawberry accession. New Phytologist, 2017, 216, 841-853.	3.5	24
14	Co-opting floral meristem identity genes for patterning of the flower-like Asteraceae inflorescence. Plant Physiology, 2016, 172, pp.00779.2016.	2.3	49
15	<i><scp>TERMINAL FLOWER</scp>1</i> is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (<i>FragariaA</i> A-Â <i>ananassa</i> Duch.). Plant Biotechnology Journal, 2016, 14, 1852-1861.	4.1	52
16	Anthocyanin biosynthesis in gerbera cultivar †Estelle†and its acyanic sport †Ivoryâ€. Planta, 2015, 242, 601-611.	1.6	29
17	Light quality regulates flowering in FvFT1/FvTFL1 dependent manner in the woodland strawberry Fragaria vesca. Frontiers in Plant Science, 2014, 5, 271.	1.7	42
18	Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of <i>Gerbera hybrida</i> . New Phytologist, 2014, 201, 1469-1483.	3.5	104

#	Article	IF	CITATIONS
19	Functional diversification of duplicated <scp>CYC</scp> 2 clade genes in regulation of inflorescence development in <i><scp>G</scp>erbera hybrida</i> (<scp>A</scp> steraceae). Plant Journal, 2014, 79, 783-796.	2.8	98
20	Molecular Control of Inflorescence Development in Asteraceae. Advances in Botanical Research, 2014, 72, 297-333.	0.5	33
21	Modification of <i>Tobacco rattle virus</i> RNA1 to Serve as a VIGS Vector Reveals That the 29K Movement Protein Is an RNA Silencing Suppressor of the Virus. Molecular Plant-Microbe Interactions, 2013, 26, 503-514.	1.4	25
22	Dynamic control of supplemental lighting intensity in a greenhouse environment. Lighting Research and Technology, 2013, 45, 295-304.	1.2	64
23	The <i>Fragaria vesca </i> Homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 Represses Flowering and Promotes Vegetative Growth. Plant Cell, 2013, 25, 3296-3310.	3.1	113
24	Genetic diversity of native cultivated cacao accessions (Theobroma cacao L.) in Nicaragua. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 254-257.	0.4	1
25	Genetic purity of common bean seed generations (Phaseolus vulgaris cv. 'INTA ROJO') as tested with microsatellite markers. Seed Science and Technology, 2012, 40, 73-85.	0.6	4
26	Evolution and Diversification of the CYC/TB1 Gene Family in Asteraceae-A Comparative Study in Gerbera (Mutisieae) and Sunflower (Heliantheae). Molecular Biology and Evolution, 2012, 29, 1155-1166.	3 . 5	127
27	Mutation in <i>TERMINAL FLOWER1</i> Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry <i>Fragaria vesca</i> ÂÂ. Plant Physiology, 2012, 159, 1043-1054.	2.3	158
28	Virusâ€induced gene silencing for Asteraceae—a reverse genetics approach for functional genomics in <i>Gerbera hybrida</i> . Plant Biotechnology Journal, 2012, 10, 970-978.	4.1	54
29	Over-expression of the Gerbera hybrida At-SOC1-like1 gene Gh-SOC1 leads to floral organ identity deterioration. Annals of Botany, 2011, 107, 1491-1499.	1.4	38
30	Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biology, 2010, 10, 128.	1.6	44
31	Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biology, 2010, 10, 129.	1.6	44
32	Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. Journal of Experimental Botany, 2010, 61, 75-85.	2.4	58
33	Gerberan karvasaineet suojaavat hy $\tilde{A}\P$ nteisherbivorialta. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-5.	0.0	0
34	Ahomansikan kukintaan vaikuttavien geenien karakterisointi. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-5.	0.0	0
35	Mansikan kukintageenien identifiointi. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-4.	0.0	0
36	Valon spektri sÃ Ãt elee ahomansikan (Fragaria vesca L.) rönsynmuodostusta ja kukintainduktiota. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-4.	0.0	0

#	Article	IF	CITATIONS
37	PLANTING YEAR PROHEXADIONE-CALCIUM TREATMENT INCREASES THE CROPPING POTENTIAL AND YIELD OF STRAWBERRY. Acta Horticulturae, 2009, , 741-744.	0.1	5
38	Identification of flowering genes in strawberry, a perennial SD plant. BMC Plant Biology, 2009, 9, 122.	1.6	65
39	Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria × ananassa Duch). BMC Plant Biology, 2009, 9, 18.	1.6	58
40	IDENTIFICATION OF FLOWERING RELATED CANDIDATE GENES FROM FRAGARIA VESCA USING EST SEQUENCING. Acta Horticulturae, 2009, , 459-462.	0.1	0
41	A TCP domain transcription factor controls flower type specification along the radial axis of the <i>Gerbera</i> (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9117-9122.	3.3	229
42	Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. Journal of Experimental Botany, 2008, 59, 3691-3703.	2.4	91
43	Plant biotechnology for deeper understanding, wider use and further development of agricultural and horticultural crops. Agricultural and Food Science, 2008, 17, 307.	0.3	3
44	Expression of xyloglucan endotransglycosylases of Gerbera hybrida and Betula pendula in Pichia pastoris. Journal of Biotechnology, 2007, 130, 161-170.	1.9	7
45	Transcriptional analysis of petal organogenesis in Gerbera hybrida. Planta, 2007, 226, 347-360.	1.6	35
46	Floral Developmental Genetics of Gerbera (Asteraceae). Advances in Botanical Research, 2006, , 323-351.	0.5	16
47	Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). BMC Plant Biology, 2006, 6, 11.	1.6	51
48	Mining plant diversity: Gerbera as a model system for plant developmental and biosynthetic research. BioEssays, 2006, 28, 756-767.	1.2	48
49	Reproductive meristem fates in Gerbera. Journal of Experimental Botany, 2006, 57, 3445-3455.	2.4	33
50	Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Research, 2005, 15, 475-486.	2.4	75
51	Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15817-15822.	3.3	113
52	Activation of Anthocyanin Biosynthesis in Gerbera hybrida (Asteraceae) Suggests Conserved Protein-Protein and Protein-Promoter Interactions between the Anciently Diverged Monocots and Eudicots. Plant Physiology, 2003, 133, 1831-1842.	2.3	137
53	GRCD1, an AGL2-Like MADS Box Gene, Participates in the C Function during Stamen Development in Gerbera hybrida. Plant Cell, 2000, 12, 1893.	3.1	1
54	GRCD1, an AGL2-like MADS Box Gene, Participates in the C Function during Stamen Development in Gerbera hybrida. Plant Cell, 2000, 12, 1893-1902.	3.1	82

#	Article	IF	Citations
55	GEG Participates in the Regulation of Cell and Organ Shape during Corolla and Carpel Development in Gerbera hybrida. Plant Cell, 1999, 11, 1093.	3.1	6
56	GEG Participates in the Regulation of Cell and Organ Shape during Corolla and Carpel Development in Gerbera hybrida. Plant Cell, 1999, 11, 1093-1104.	3.1	125
57	Organ identity genes and modified patterns of flower development inGerbera hybrida(Asteraceae). Plant Journal, 1999, 17, 51-62.	2.8	220
58	New pathway to polyketides in plants. Nature, 1998, 396, 387-390.	13.7	186
59	A bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida(Asteraceae). Plant Journal, 1998, 16, 93-99.	2.8	71
60	Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9033-9038.	3.3	94
61	Transformation of antisense constructs of the chalcone synthase gene superfamily into Gerbera hybrida: differential effect on the expression of family members. Molecular Breeding, 1996, 2, 41.	1.0	29
62	Transgene inactivation inPetunia hybrida is influenced by the properties of the foreign gene. Molecular Genetics and Genomics, 1995, 248, 649-656.	2.4	73
63	Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae). Plant Molecular Biology, 1995, 28, 47-60.	2.0	99
64	Gerbera hybrida (Asteraceae) imposes regulation at several anatomical levels during inflorescence development on the gene for dihydroflavonol-4-reductase. Plant Molecular Biology, 1995, 28, 935-941.	2.0	15
65	Modification of Flower Colour using Genetic Engineering. Biotechnology and Genetic Engineering Reviews, 1994, 12, 63-88.	2.4	22
66	A corolla-and carpel-abundant, non-specific lipid transfer protein gene is expressed in the epidermis and parenchyma of Gerbera hybrida var. Regina (Compositae). Plant Molecular Biology, 1994, 26, 971-978.	2.0	33
67	Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae). Plant Molecular Biology, 1993, 22, 183-193.	2.0	151
68	Agrobacterium-Mediated Transfer of Antisense Chalcone Synthase cDNA to Gerbera hybrida Inhibits Flower Pigmentation. Nature Biotechnology, 1993, 11, 508-511.	9.4	80