
Jason A Bartos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Concomitant Respiratory Failure Can Impair Myocardial Oxygenation in Patients with Acute Cardiogenic Shock Supported by VA-ECMO. Journal of Cardiovascular Translational Research, 2022, 15, 217-226.	1.1	15
2	Coronary artery disease burden relation with the presentation of acute cardiac events and ventricular fibrillation. Catheterization and Cardiovascular Interventions, 2022, 99, 804-811.	0.7	8
3	The Tool Is Only as Good as the Person Who Wields It. JACC: Cardiovascular Interventions, 2022, 15, 248-250.	1.1	2
4	The association of modifiable mechanical ventilation settings, blood gas changes and survival on extracorporeal membrane oxygenation for cardiac arrest. Resuscitation, 2022, 174, 53-61.	1.3	25
5	ECPR2: Expert Consensus on PeRcutaneous Cannulation for Extracorporeal CardioPulmonary Resuscitation. Resuscitation, 2022, 179, 214-220.	1.3	17
6	Patients treated with venoarterial extracorporeal membrane oxygenation have different baseline risk and outcomes dependent on indication and route of cannulation. Hellenic Journal of Cardiology, 2021, 62, 38-45.	0.4	5
7	Enhancing cardiac arrest survival with extracorporeal cardiopulmonary resuscitation: insights into the process of death. Annals of the New York Academy of Sciences, 2021, , .	1.8	5
8	Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement From the Extracorporeal Life Support Organization. ASAIO Journal, 2021, 67, 221-228.	0.9	194
9	Overview of Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) Support for the Management of Cardiogenic Shock. Frontiers in Cardiovascular Medicine, 2021, 8, 686558.	1.1	55
10	Outcomes associated with delayed enteral feeding after cardiac arrest treated with veno-arterial extracorporeal membrane oxygenation and targeted temperature management. Resuscitation, 2021, 164, 20-26.	1.3	14
11	Coronary angiography after cardiac arrest: Toward a nuanced approach. Resuscitation, 2021, 167, 422-424.	1.3	0
12	Refractory cardiac arrest: when timing is crucial – Authors' reply. Lancet, The, 2021, 398, 23-24.	6.3	1
13	ST-Elevation Myocardial Infarction Complicated by Out-of-Hospital Cardiac Arrest. Interventional Cardiology Clinics, 2021, 10, 359-368.	0.2	1
14	Reply to: Immortal time bias in an observational study on enteral nutrition. Resuscitation, 2021, 166, 146-147.	1.3	0
15	Impact of AKI in Patients with Out-of-Hospital Cardiac Arrest Managed with VA ECMO. Kidney360, 2021, 2, 1827-1830.	0.9	2
16	Improved Survival With Extracorporeal Cardiopulmonary Resuscitation Despite Progressive Metabolic Derangement Associated With Prolonged Resuscitation. Circulation, 2020, 141, 877-886.	1.6	204
17	Rationale and Strategies for Development of an Optimal Bundle of Management for Cardiac Arrest. , 2020, 2, e0214.		7
18	Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 2020, 142, S366-S468.	1.6	896

JASON A BARTOS

#	Article	lF	CITATIONS
19	Rationale and methods of the Advanced R2Eperfusion STrategies for Refractory Cardiac Arrest (ARREST) trial. American Heart Journal, 2020, 229, 29-39.	1.2	24
20	Echocardiographic evaluation of cardiac recovery after refractory out-of-hospital cardiac arrest. Resuscitation, 2020, 154, 38-46.	1.3	17
21	The Minnesota mobile extracorporeal cardiopulmonary resuscitation consortium for treatment of out-of-hospital refractory ventricular fibrillation: Program description, performance, and outcomes. EClinicalMedicine, 2020, 29-30, 100632.	3.2	58
22	Closed-loop machine-controlled CPR system optimises haemodynamics during prolonged CPR. Resuscitation Plus, 2020, 3, 100021.	0.6	2
23	Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet, The, 2020, 396, 1807-1816.	6.3	519
24	Increased QT Dispersion Is Linked to Worse Outcomes in Patients Hospitalized for Outâ€ofâ€Hospital Cardiac Arrest. Journal of the American Heart Association, 2020, 9, e016485.	1.6	8
25	Current Work in Extracorporeal Cardiopulmonary Resuscitation. Critical Care Clinics, 2020, 36, 723-735.	1.0	2
26	Response by Bartos and Yannopoulos to Letter Regarding Article, "Improved Survival With Extracorporeal Cardiopulmonary Resuscitation Despite Progressive Metabolic Derangement Associated With Prolonged Resuscitation― Circulation, 2020, 142, e121-e122.	1.6	2
27	Refractory cardiac arrest: where extracorporeal cardiopulmonary resuscitation fits. Current Opinion in Critical Care, 2020, 26, 596-602.	1.6	10
28	Poloxamer 188 Protects Isolated Adult Mouse Cardiomyocytes from Reoxygenation Injury. Pharmacology Research and Perspectives, 2020, 8, e00639.	1.1	10
29	Kounis Syndrome Leading to Cardiac Arrest After Iodinated Contrast Exposure. JACC: Case Reports, 2020, 2, 626-629.	0.3	7
30	The rise of the machines: ECLS and other temporary mechanical support for patients with cardiac arrest. Resuscitation, 2020, 151, 208-210.	1.3	4
31	Intraoperative Temperature Management. Therapeutic Hypothermia and Temperature Management, 2020, 10, 6-10.	0.3	1
32	A fork in the road after STEMI: Rapid recovery and discharge or cardiac arrest and high mortality. Resuscitation, 2020, 148, 266-268.	1.3	0
33	Sodium Nitroprusside–Enhanced Cardiopulmonary Resuscitation Improves Blood Flow by Pulmonary Vasodilation Leading to Higher Oxygen Requirements. JACC Basic To Translational Science, 2020, 5, 183-192.	1.9	5
34	Extracorporeal cardiopulmonary resuscitation for cardiac arrest. Current Opinion in Critical Care, 2020, 26, 228-235.	1.6	29
35	Computed Tomography Coronary Plaque Characteristics Predict Ischemia Detected by Invasive Fractional Flow Reserve. Journal of Thoracic Imaging, 2020, Publish Ahead of Print, 360-366.	0.8	6
36	Diagnosis, Treatment and Follow Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium. Clinical and Applied Thrombosis/Hemostasis, 2019, 25, 107602961985303.	0.7	174

JASON A BARTOS

#	Article	IF	CITATIONS
37	Cardiac Muscle Membrane Stabilization in Myocardial Reperfusion Injury. JACC Basic To Translational Science, 2019, 4, 275-287.	1.9	24
38	The Evolving Role of the Cardiac Catheterization Laboratory in the Management of Patients With Out-of-Hospital Cardiac Arrest: A Scientific Statement From the American Heart Association. Circulation, 2019, 139, e530-e552.	1.6	154
39	Abstract 10: Early Neuroprognostication After Refractory VF/VT Cardiac Arrest Requiring ECPR. Circulation, 2019, 140, .	1.6	3
40	Synchronized Pulsatile Flow With Low Systolic Output From Venoâ€Arterial Extracorporeal Membrane Oxygenation Improves Myocardial Recovery After Experimental Cardiac Arrest in Pigs. Artificial Organs, 2018, 42, 597-604.	1.0	5
41	Identifying Candidates for Advanced Hemodynamic Support After Cardiac Arrest. Circulation, 2018, 137, 283-285.	1.6	2
42	Surviving refractory out-of-hospital ventricular fibrillation cardiac arrest: Critical care and extracorporeal membrane oxygenation management. Resuscitation, 2018, 132, 47-55.	1.3	127
43	Effect Of Membrane Sealing Copolymer Poloxamer188 On Cardiac Mitochondrial Subpopulations In A Porcine Model Of Acute Myocardial Infarction. FASEB Journal, 2018, 32, 717.4.	0.2	0
44	Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs. Resuscitation, 2017, 116, 8-15.	1.3	34
45	The future is now: neuroprotection during cardiopulmonary resuscitation. Current Opinion in Critical Care, 2017, 23, 215-222.	1.6	12
46	Coronary Artery Disease in Patients WithÂOut-of-Hospital Refractory Ventricular Fibrillation Cardiac Arrest. Journal of the American College of Cardiology, 2017, 70, 1109-1117.	1.2	249
47	Role of Epinephrine and Extracorporeal Membrane Oxygenation in the Management of Ischemic Refractory Ventricular Fibrillation. JACC Basic To Translational Science, 2017, 2, 244-253.	1.9	15
48	Sodium nitroprusside enhanced cardiopulmonary resuscitation improves short term survival in a porcine model of ischemic refractory ventricular fibrillation. Resuscitation, 2017, 110, 6-11.	1.3	15
49	Intracoronary Poloxamer 188 Prevents Reperfusion Injury in a Porcine Model ofÂST-Segment Elevation MyocardialÂInfarction. JACC Basic To Translational Science, 2016, 1, 224-234.	1.9	32
50	Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest. Resuscitation, 2016, 105, 29-35.	1.3	8
51	Minnesota Resuscitation Consortium's Advanced Perfusion and Reperfusion Cardiac Life Support Strategy for Outâ€ofâ€Hospital Refractory Ventricular Fibrillation. Journal of the American Heart Association, 2016, 5, .	1.6	177
52	Sodium Nitroprusside–Enhanced Cardiopulmonary Resuscitation Facilitates Intra-Arrest Therapeutic Hypothermia in a Porcine Model of Prolonged Ventricular Fibrillation*. Critical Care Medicine, 2015, 43, 849-855.	0.4	9
53	Bundled postconditioning therapies improve hemodynamics and neurologic recovery after 17min of untreated cardiac arrest. Resuscitation, 2015, 87, 7-13.	1.3	33
54	Post-conditioning to improve cardiopulmonary resuscitation. Current Opinion in Critical Care, 2014, 20, 242-249.	1.6	12

JASON A BARTOS

#	Article	IF	CITATIONS
55	Inotropes. Journal of the American College of Cardiology, 2014, 63, 2069-2078.	1.2	135
56	Anaesthetic Postconditioning at the Initiation of CPR Improves Myocardial and Mitochondrial Function in a Pig Model of Prolonged Untreated Ventricular Fibrillation. Resuscitation, 2014, 85, 1745-1751.	1.3	20
57	Novelties in pharmacological management of cardiopulmonary resuscitation. Current Opinion in Critical Care, 2013, 19, 417-423.	1.6	3
58	The High-Risk Patient With Heart Failure With Reduced Ejection Fraction: Treatment Options and Challenges. Clinical Pharmacology and Therapeutics, 2013, 94, 509-518.	2.3	2
59	Striatal-enriched Protein-tyrosine Phosphatase (STEP) Regulates Pyk2 Kinase Activity. Journal of Biological Chemistry, 2012, 287, 20942-20956.	1.6	77
60	Prevention of transplant coronary artery disease by prenylation inhibitors. Journal of Heart and Lung Transplantation, 2011, 30, 761-769.	0.3	11
61	Computed Tomography–Guided Percutaneous Needle Biopsy of Indeterminate Pulmonary Pathology: Efficacy of Obtaining a Diagnostic Sample in Immunocompetent and Immunocompromised Patients. Clinical Lung Cancer, 2010, 11, 251-256.	1.1	14
62	Postsynaptic Clustering and Activation of Pyk2 by PSD-95. Journal of Neuroscience, 2010, 30, 449-463.	1.7	75
63	Non-volume-loaded heart provides a more relevant heterotopic transplantation model. Transplant Immunology, 2010, 23, 65-70.	0.6	7
64	Displacement of α-Actinin from the NMDA Receptor NR1 C0 Domain By Ca2+/Calmodulin Promotes CaMKII Binding. Biochemistry, 2007, 46, 8485-8497.	1.2	42
65	Apo-Calmodulin Binds with its C-terminal Domain to the N-Methyl-d-aspartate Receptor NR1 CO Region. Journal of Biological Chemistry, 2004, 279, 2166-2175.	1.6	39
66	Contemporary approaches to cardiopulmonary resuscitation: physiology-guided approaches. Journal of Emergency and Critical Care Medicine, 0, 4, 19-19.	0.7	7
67	Extracorporeal Life Support for Cardiac Arrest and Cardiogenic Shock. US Cardiology Review, 0, 15, .	0.5	2