Yang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235022/publications.pdf

Version: 2024-02-01

687220 839398 2,170 20 13 18 citations h-index g-index papers 21 21 21 3597 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nickel Niobate Anodes for High Rate Lithiumâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	10.2	49
2	Enhanced lithiation dynamics in nanostructured Nb18W16O93 anodes. Journal of Power Sources, 2021, 482, 228898.	4.0	15
3	Long-range ordering of two-dimensional wide bandgap tantalum oxide nanosheets in printed films. Journal of Materials Chemistry C, 2021, 9, 5699-5705.	2.7	3
4	Printable Two-Dimensional V ₂ O ₅ /MXene Heterostructure Cathode for Lithium-Ion Battery. Journal of the Electrochemical Society, 2021, 168, 020507.	1.3	9
5	Tunable capacitance in all-inkjet-printed nanosheet heterostructures. Energy Storage Materials, 2021, 36, 318-325.	9.5	22
6	2D titanoniobate-titaniumcarbide nanohybrid anodes for ultrafast lithium-ion batteries. Journal of Power Sources, 2021, 512, 230523.	4.0	5
7	Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano Energy, 2020, 68, 104306.	8.2	90
8	Hierarchically Hollow and Porous NiO/NiCo ₂ O ₄ Nanoprisms Encapsulated in Graphene Oxide for Lithium Storage. Langmuir, 2020, 36, 9668-9674.	1.6	27
9	Frontispiece: Metal Oxide Nanosheets as 2D Building Blocks for the Design of Novel Materials. Chemistry - A European Journal, 2020, 26, .	1.7	O
10	MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 2020, 32, e1908486.	11.1	239
11	Metal Oxide Nanosheets as 2D Building Blocks for the Design of Novel Materials. Chemistry - A European Journal, 2020, 26, 9084-9098.	1.7	37
12	Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019, 48, 3229-3264.	18.7	360
13	Advances in Inkâ€Jet Printing of MnO ₂ â€Nanosheet Based Pseudocapacitors. Small Methods, 2019, 3, 1800318.	4.6	23
14	Inkjet printing of \hat{l} -MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy, 2018, 49, 481-488.	8.2	221
15	Ionic liquid-assisted <i>in situ</i> growth of a cobalt oxide composite and its application in supercapacitors and electrochemical biosensors. New Journal of Chemistry, 2018, 42, 18659-18666.	1.4	1
16	All-printed paper based supercapacitors. , 2017, , .		0
17	A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Selfâ€Transformation. Advanced Materials, 2016, 28, 5242-5248.	11.1	229
18	Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44, 5181-5199.	18.7	546

#	Article	IF	CITATIONS
19	Printed electronics integrated with paper-based microfluidics: new methodologies for next-generation health care. Microfluidics and Nanofluidics, 2015, 19, 251-261.	1.0	42
20	Porous hollow Co ₃ O ₄ with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale, 2014, 6, 14354-14359.	2.8	252