Eugene F Derose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7234493/publications.pdf

Version: 2024-02-01

516710 580821 30 656 16 25 citations h-index g-index papers 31 31 31 1134 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure, Immunogenicity, and IgE Cross-Reactivity among Walnut and Peanut Vicilin-Buried Peptides. Journal of Agricultural and Food Chemistry, 2022, 70, 2389-2400.	5.2	9
2	Nanobody Paratope Ensembles in Solution Characterized by MD Simulations and NMR. International Journal of Molecular Sciences, 2022, 23, 5419.	4.1	6
3	The mosquito protein AEG12 displays both cytolytic and antiviral properties via a common lipid transfer mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
4	Response to Letter to the Editor regarding "Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches― Analytical and Bioanalytical Chemistry, 2021, 413, 7627-7629.	3.7	0
5	The Structural Basis for Nonsteroidal Anti-Inflammatory Drug Inhibition of Human Dihydrofolate Reductase. Journal of Medicinal Chemistry, 2020, 63, 8314-8324.	6.4	7
6	Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Analytical and Bioanalytical Chemistry, 2020, 412, 6789-6809.	3.7	14
7	Mapping Human Monoclonal IgE Epitopes on the Major Dust Mite Allergen Der p 2. Journal of Immunology, 2020, 205, 1999-2007.	0.8	21
8	A Human IgE Antibody Binding Site on Der p 2 for the Design of a Recombinant Allergen for Immunotherapy. Journal of Immunology, 2019, 203, 2545-2556.	0.8	19
9	Hydrophobic ligands influence the structure, stability, and processing of the major cockroach allergen Bla g 1. Scientific Reports, 2019, 9, 18294.	3.3	14
10	Transitions in DNA polymerase \hat{l}^2 $\hat{l}^1/4$ s-ms dynamics related to substrate binding and catalysis. Nucleic Acids Research, 2018, 46, 7309-7322.	14.5	3
11	APE2 Zf-GRF facilitates $3\hat{a} \in \mathbb{Z}^2$ - $5\hat{a} \in \mathbb{Z}^2$ resection of DNA damage following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 304-309.	7.1	50
12	Identification of drivers for the metamorphic transition of HIV-1 reverse transcriptase. Biochemical Journal, 2017, 474, 3321-3338.	3.7	7
13	A Structural Basis for Biguanide Activity. Biochemistry, 2017, 56, 4786-4798.	2.5	20
14	Characterization of the APLF FHA–XRCC1 phosphopeptide interaction and its structural and functional implications. Nucleic Acids Research, 2017, 45, 12374-12387.	14.5	9
15	A metabolomic, geographic, and seasonal analysis of the contribution of pollen-derived adenosine to allergic sensitization. Metabolomics, 2016, 12, 1.	3.0	10
16	Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. Science of the Total Environment, 2016, 569-570, 880-887.	8.0	39
17	Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war. Nucleic Acids Research, 2016, 44, 1776-1788.	14.5	10
18	Asymmetric conformational maturation of HIV-1 reverse transcriptase. ELife, 2015, 4, .	6.0	19

#	Article	IF	CITATION
19	Molecular mechanisms for the regulation of histone mRNA stem-loop–binding protein by phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2937-46.	7.1	29
20	IP6K structure and the molecular determinants of catalytic specificity in an inositol phosphate kinase family. Nature Communications, 2014, 5, 4178.	12.8	55
21	Characterization of the Redox Transition of the XRCC1 N-terminal Domain. Structure, 2014, 22, 1754-1763.	3.3	6
22	Investigation of spin-trapping artifacts formed by the Forrester-Hepburn mechanism. Free Radical Biology and Medicine, 2013, 65, 1497-1505.	2.9	24
23	Solution Structure of the Dickerson DNA Dodecamer Containing a Single Ribonucleotide. Biochemistry, 2012, 51, 2407-2416.	2.5	56
24	Solution structure of the Drosha double-stranded RNA-binding domain. Silence: A Journal of RNA Regulation, 2010, 1, 2.	8.1	26
25	Solution Structure of Polymerase $\hat{1}\frac{1}{4}$'s BRCT Domain Reveals an Element Essential for Its Role in Nonhomologous End Joining. Biochemistry, 2007, 46, 12100-12110.	2.5	25
26	Phage Like It HOT. Structure, 2004, 12, 2221-2231.	3.3	12
27	Solution Structure of the Lyase Domain of Human DNA Polymerase λ. Biochemistry, 2003, 42, 9564-9574.	2.5	27
28	Elucidation of the $\hat{l}\mu\hat{a}^{\hat{l}}$, Subunit Interface of Escherichia coli DNA Polymerase III by NMR Spectroscopy. Biochemistry, 2003, 42, 3635-3644.	2.5	30
29	Model for the Catalytic Domain of the Proofreading ε Subunit ofEscherichia coliDNA Polymerase III Based on NMR Structural Dataâ€. Biochemistry, 2002, 41, 94-110.	2.5	32
30	The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural	2.8	62