List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7234161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590.	18.7	906
2	A new layered metal–organic framework as a promising heterogeneous catalyst for olefin epoxidation reactions. Chemical Communications, 2012, 48, 6541.	2.2	151
3	Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst. Journal of Molecular Catalysis A, 2009, 310, 150-158.	4.8	135
4	Controlled Synthesis of Waterâ€Ðispersible Faceted Crystalline Copper Nanoparticles and Their Catalytic Properties. Chemistry - A European Journal, 2010, 16, 10735-10743.	1.7	92
5	Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. Journal of Environmental Management, 2016, 184, 157-169.	3.8	86
6	Selective oxidation of aromatic primary alcohols to aldehydes using molybdenum acetylide oxo-peroxo complex as catalyst. Tetrahedron Letters, 2009, 50, 2885-2888.	0.7	81
7	Silica nanosphere-supported shaped Pd nanoparticles encapsulated with nanoporous silica shell: Efficient and recyclable nanocatalysts. Journal of Materials Chemistry, 2010, 20, 7834.	6.7	75
8	Transesterification of diethyl oxalate with phenol using MoO3/SiO2 catalyst. Applied Catalysis A: General, 2005, 285, 190-195.	2.2	62
9	Efficient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups on nanoporous silica. Journal of Catalysis, 2009, 265, 131-140.	3.1	62
10	Silica–Dendrimer Core–Shell Microspheres with Encapsulated Ultrasmall Palladium Nanoparticles: Efficient and Easily Recyclable Heterogeneous Nanocatalysts. Langmuir, 2011, 27, 14408-14418.	1.6	58
11	A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions. Chemical Communications, 2015, 51, 8496-8499.	2.2	54
12	One-pot synthesis of ultrasmall MoO ₃ nanoparticles supported on SiO ₂ , TiO ₂ , and ZrO ₂ nanospheres: an efficient epoxidation catalyst. Journal of Materials Chemistry A, 2014, 2, 19060-19066.	5.2	53
13	Vapor phase nitration of benzene using mesoporous MoO3/SiO2 solid acid catalyst. Green Chemistry, 2006, 8, 488.	4.6	49
14	Selective N-oxidation of aromatic amines to nitroso derivatives using a molybdenum acetylide oxo-peroxo complex as catalyst. Tetrahedron Letters, 2008, 49, 3616-3619.	0.7	48
15	An efficient method for the synthesis of acylals from aldehydes using silica-supported perchloric acid (HClO4–SiO2). Tetrahedron Letters, 2006, 47, 5573-5576.	0.7	47
16	Selective cis-dihydroxylation of olefins using recyclable homogeneous molybdenum acetylide catalyst. Journal of Molecular Catalysis A, 2008, 285, 111-119.	4.8	47
17	Nanosized gold-catalyzed selective oxidation of alkyl-substituted benzenes and n-alkanes. Applied Catalysis A: General, 2012, 435-436, 19-26.	2.2	47
18	Black yet green: Sulfonic acid functionalized carbon as an efficent catalyst for highly selective isomerization of α-pinene oxide to trans-carveol. Applied Catalysis B: Environmental, 2020, 268, 118456.	10.8	42

#	Article	IF	CITATIONS
19	Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes. Dalton Transactions, 2020, 49, 10431-10440.	1.6	40
20	Synthesis of Catalytically Active Porous Platinum Nanoparticles by Transmetallation Reaction and Proposition of the Mechanism. Small, 2009, 5, 1467-1473.	5.2	39
21	Bifunctional Mesoporous Silica Catalyst for C–C Bond Forming Tandem Reactions. European Journal of Inorganic Chemistry, 2011, 2011, 3174-3182.	1.0	39
22	Cucurbit[6]uril-Stabilized Palladium Nanoparticles as a Highly Active Catalyst for Chemoselective Hydrogenation of Various Reducible Groups in Aqueous Media. ChemistrySelect, 2017, 2, 9911-9919.	0.7	35
23	Stabilization of palladium nanoparticles on chitosan derived N-doped carbon for hydrogenation of various functional groups. Applied Surface Science, 2019, 487, 1307-1315.	3.1	35
24	Assembling Nanostructures for Effective Catalysis: Supported Palladium Nanoparticle Multicores Coated by a Hollow and Nanoporous Zirconia Shell. ChemSusChem, 2012, 5, 132-139.	3.6	34
25	Biocompatibility of Calcined Mesoporous Silica Particles with Cellular Bioenergetics in Murine Tissues. Chemical Research in Toxicology, 2010, 23, 1796-1805.	1.7	33
26	Nitrogen-rich graphitic-carbon stabilized cobalt nanoparticles for chemoselective hydrogenation of nitroarenes at milder conditions. Inorganic Chemistry Frontiers, 2018, 5, 806-813.	3.0	32
27	Highly loaded well dispersed stable Ni species in NiXMg2AlOY nanocomposites: Application to hydrogen production from bioethanol. Applied Catalysis B: Environmental, 2015, 166-167, 485-496.	10.8	29
28	Au/SBA-15-Based Robust and Convenient-to-Use Nanopowder Material for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 22810-22817.	1.5	28
29	Electrocatalytic and catalytic CO2 hydrogenation on ZnO/g-C3N4 hybrid nanoelectrodes. Applied Surface Science, 2021, 538, 148120.	3.1	28
30	Aminotroponate/Aminotroponiminate Zinc Complexes Functionalized Mesoporous Silica Catalysts for Intramolecular Hydroamination of Non-Activated Alkenes with Varied Steric and Electronic Properties. ACS Catalysis, 2011, 1, 736-750.	5.5	27
31	Nearâ€IR Absorbing Solar Cell Sensitized With Bacterial Photosynthetic Membranes. Photochemistry and Photobiology, 2012, 88, 1467-1472.	1.3	26
32	Utilization of Waste Biomass for the Synthesis of Functionalizable Support for Covalent Anchoring of Active Organo Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 3018-3026.	3.2	26
33	Sustainable route for the synthesis of flower-like Ni@N-doped carbon nanosheets from bagasse and its catalytic activity towards reductive amination of nitroarenes with bio-derived aldehydes. New Journal of Chemistry, 2020, 44, 18714-18723.	1.4	25
34	In Vitro Study and Biocompatibility of Calcined Mesoporous Silica Microparticles in Mouse Lung. Toxicological Sciences, 2011, 122, 86-99.	1.4	24
35	Phosphonate functionalized carbon spheres as BrÃ,nsted acid catalysts for the valorization of bio-renewable α-pinene oxide to <i>trans</i>	1.6	24
36	Recent developments in state-of-the-art silica-modified catalysts for the fixation of CO ₂ in epoxides to form organic carbonates. Sustainable Energy and Fuels, 2022, 6, 1198-1248.	2.5	22

#	Article	IF	CITATIONS
37	Bismuthâ€Oxideâ€Decorated Graphene Oxide Hybrids for Catalytic and Electrocatalytic Reduction of CO ₂ . Chemistry - A European Journal, 2020, 26, 8801-8809.	1.7	21
38	Calcium phosphate nanocapsule crowned multiwalled carbon nanotubes for pH triggered intracellular anticancer drug release. Journal of Materials Chemistry B, 2015, 3, 3931-3939.	2.9	20
39	Environmentally Benign Bioderived Carbon Microspheres-Supported Molybdena Nanoparticles as Catalyst for the Epoxidation Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 904-910.	3.2	19
40	<i>In situ</i> fabricated MOF–cellulose composite as an advanced ROS deactivator-convertor: fluoroswitchable bi-phasic tweezers for free chlorine detoxification and size-exclusive catalytic insertion of aqueous H ₂ O ₂ . Journal of Materials Chemistry A, 2022, 10, 4316-4332.	5.2	19
41	Continuous Henry reaction to a specific product over nanoporous silica-supported amine catalysts on fixed bed reactor. Applied Catalysis A: General, 2010, 389, 19-26.	2.2	18
42	New polyoxomolybdate compounds synthesized in situ using ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate as green solvent. New Journal of Chemistry, 2013, 37, 2894.	1.4	17
43	Regioselective nitration of cumene to 4-nitro cumene using nitric acid over solid acid catalyst. Catalysis Communications, 2006, 7, 394-398.	1.6	16
44	Magnesium Perchlorate: An Efficient Catalyst for One-Pot Synthesis of Pyrano- and Furanoquinolines. Synlett, 2007, 2007, 1379-1382.	1.0	16
45	Palladium Nanoparticles Supported on Magnesium Hydroxide Fluorides: A Selective Catalyst for Olefin Hydrogenation. ChemCatChem, 2014, 6, 3182-3191.	1.8	16
46	Surfactant-Assisted Selective Oxidation of Aromatic Amines to Nitro Compounds by in Situ-Formed Performic Acid. ACS Omega, 2019, 4, 9453-9457.	1.6	15
47	In vitro biocompatibility of calcined mesoporous silica particles and fetal blood cells. International Journal of Nanomedicine, 2012, 7, 3111.	3.3	13
48	Highly active and scalable SO3H functionalized carbon catalyst synthesized from bagasse for transformation of bio-based platform chemicals into fuel precursors and its in-depth characterization studies. Fuel, 2022, 321, 124008.	3.4	13
49	Gram-Scale Synthesis of Flavoring Ketones in One Pot via Alkylation–Decarboxylation on Benzylic Carbon Using a Commercial Solid Acid Catalyst. ACS Omega, 2020, 5, 14291-14296.	1.6	12
50	Highly efficient manganese oxide decorated graphitic carbon nitrite electrocatalyst for reduction of CO2 to formate. Catalysis Today, 2021, 370, 104-113.	2.2	12
51	Isolation, Characterization, and Identification of Catalytically Active Species in the MoO ₃ /SiO ₂ Catalyst during Solid Acid Catalyzed Reactions. ChemCatChem, 2013, 5, 1531-1537.	1.8	11
52	Silica microspheres containing high density surface hydroxyl groups as efficient epoxidation catalysts. RSC Advances, 2015, 5, 21125-21131.	1.7	11
53	Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres. Colloids and Surfaces B: Biointerfaces, 2015, 130, 84-92.	2.5	11
54	Trimming Nanostructured Walls While Fluorinating their Surfaces: A Route to Making and Widening Pores of Nanoporous Materials and Efficient Catalysts. Chemistry of Materials, 2010, 22, 4950-4963.	3.2	9

#	Article	IF	CITATIONS
55	Practical and General Method for Direct Synthesis of Alkyl Fluorides from Alcohols under Mild Conditions. Monatshefte Für Chemie, 2005, 136, 1579-1582.	0.9	8
56	Biocompatibility of Calcined Mesoporous Silica Particles with Ventricular Myocyte Structure and Function. Chemical Research in Toxicology, 2013, 26, 26-36.	1.7	8
57	Chitosan supported molybdate nanoclusters as an efficient catalyst for oxidation of alkenes and alcohols. Cellulose, 2020, 27, 8769-8783.	2.4	8
58	Efficient and recyclable solid acid-catalyzed alkylation of active methylene compound via oxonium intermediate for atom economical synthesis of organic compounds. Research on Chemical Intermediates, 2021, 47, 3691-3703.	1.3	8
59	Chemoselective isomerization of α-Pinene oxide to trans-Carveol by robust and mild BrÃ,nsted acidic zirconium phosphate catalyst. Molecular Catalysis, 2022, 521, 112189.	1.0	8
60	Solvent-washable polymer templated synthesis of mesoporous materials and solid-acid nanocatalysts in one-pot. Chemical Communications, 2009, , 6201.	2.2	7
61	Selective Oxidation of Nonrefractory and Refractory Sulfides by Cyclopentadienyl Molybdenum Acetylide Complexes as Efficient Catalysts. Catalysis Letters, 2012, 142, 1352-1360.	1.4	7
62	Highly regioselective tandem hydroformylation of substituted styrene using Iminophosphine rhodium complex immobilized on carbon. Journal of Industrial and Engineering Chemistry, 2022, 112, 218-232.	2.9	7
63	Sustainable Isomerization of αâ€Pinene Oxide to <i>trans</i> â€Carveol using Formic Acid/Aniline System at Room Temperature. Advanced Sustainable Systems, 2021, 5, 2000212.	2.7	6
64	BrÃ,nsted acidic cellulose-PO3H: An efficient catalyst for the chemoselective synthesis of fructones and trans-esterification via condensation of acetoacetic esters with alcohols and diols. Molecular Catalysis, 2021, 515, 111912.	1.0	6
65	An Earth-abundant cobalt based photocatalyst: visible light induced direct (het)arene C–H arylation and CO ₂ capture. Dalton Transactions, 2022, 51, 2452-2463.	1.6	5
66	Cellulose@PO ₃ H: As an Efficient and Recyclable Ionic Liquid-Enabled Catalytic Greener Approach to One-Step Synthesis of Flavoring Ketones. ACS Sustainable Chemistry and Engineering, 2022, 10, 8526-8538.	3.2	5
67	Exceptional Catalytic Activity of Cuâ~'Zn/ZrO 2 Mixed Metal Oxide towards the Oxidation Reaction. ChemistrySelect, 2021, 6, 3814-3821.	0.7	3
68	Cubic CuxZrO100-x as an efficient and selective catalyst for the oxidation of aromatics active methyl, alcohol, and amine groups. Polyhedron, 2021, 200, 115129.	1.0	3
69	Niobium Oxide Supported on Cubic Spinel Cobalt Oxide as an Efficient Heterogeneous Catalyst for the Synthesis of Imines via Dehydrogenative Coupling of Amines and Alcohols. Catalysis Letters, 2022, 152, 3733-3746.	1.4	2
70	Practical and General Method for Direct Synthesis of Alkyl Fluorides from Alcohols under Mild Conditions ChemInform, 2006, 37, no.	0.1	0
71	Fundamental concepts on surface chemistry for nanoparticle modifications. , 2022, , 29-52.		0