
Francesco Lanza di Scalea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7234083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global–local model for three-dimensional guided wave scattering with application to rail flaw detection. Structural Health Monitoring, 2022, 21, 370-386.	7.5	6
2	Damage imaging in skin-stringer composite aircraft panel by ultrasonic-guided waves using deep learning with convolutional neural network. Structural Health Monitoring, 2022, 21, 1123-1138.	7.5	26
3	Non-destructive damage localization in built-up composite aerospace structures by ultrasonic guided-wave multiple-output scanning. Composite Structures, 2022, 292, 115670.	5.8	2
4	Identification of Elastic Properties of Composites by Inversion of Ultrasonic Guided Wave Data. Experimental Mechanics, 2021, 61, 803-816.	2.0	7
5	Global-Local model for guided wave scattering problems with application to defect characterization in built-up composite structures. International Journal of Solids and Structures, 2020, 182-183, 267-280.	2.7	19
6	Robust non-destructive inspection of composite aerospace structures by extraction of ultrasonic guided-wave transfer function in single-input dual-output scanning systems. Journal of Intelligent Material Systems and Structures, 2020, 31, 651-664.	2.5	7
7	Ultrasonic guided wave imaging of plates containing defects and inclusions. , 2020, , .		0
8	Minimum-Variance Imaging in Plates Using Guided-Wave-Mode Beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1906-1919.	3.0	14
9	On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm. Composite Structures, 2019, 223, 110969.	5.8	39
10	Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path. Structural Health Monitoring, 2019, 18, 1543-1556.	7.5	5
11	Improved global-local model to predict guided-wave scattering patterns from discontinuities in complex parts. , 2019, , .		2
12	Passive extraction of Green's function of solids and application to high-speed rail inspection. , 2019, , .		0
13	Robust passive reconstruction of dynamic transfer function in dual-output systems. Journal of the Acoustical Society of America, 2018, 143, 1019-1028.	1.1	8
14	Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Science Advances, 2018, 4, eaar3979.	10.3	204
15	Predictions of defect detection performance of air-coupled ultrasonic rail inspection system. Structural Health Monitoring, 2018, 17, 684-705.	7.5	22
16	Passive Extraction of Dynamic Transfer Function From Arbitrary Ambient Excitations: Application to High-Speed Rail Inspection From Wheel-Generated Waves. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2018, 1, .	0.9	12
17	Distributed Strain Sensing Using Electrical Time Domain Reflectometry With Nanocomposites. IEEE Sensors Journal, 2018, 18, 9515-9525.	4.7	1

18 High-speed non-contact ultrasound system for rail track integrity evaluation. , 2018, , .

1

Francesco Lanza di Scalea

#	Article	IF	CITATIONS
19	Field Test Performance of Noncontact Ultrasonic Rail Inspection System. Journal of Transportation Engineering Part A: Systems, 2017, 143, .	1.4	28
20	Thermal Stress Measurement in Continuous Welded Rails Using the Hole-Drilling Method. Experimental Mechanics, 2017, 57, 165-178.	2.0	18
21	Ultrasonic Imaging in Solids Using Wave Mode Beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 602-616.	3.0	11
22	A match coefficient approach for damage imaging in structural components by ultrasonic synthetic aperture focus. Procedia Engineering, 2017, 199, 1544-1549.	1.2	10
23	Detection of major impact damage to composite aerospace structures by ultrasonic guided waves and statistical signal processing. Procedia Engineering, 2017, 199, 1550-1555.	1.2	8
24	Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing. Materials, 2017, 10, 616.	2.9	27
25	Sensitivity to Axial Stress of Electro-Mechanical Impedance Measurements. Experimental Mechanics, 2016, 56, 1599-1610.	2.0	24
26	Actuation stress modelling of piezoceramic transducers under variable temperature field. Journal of Intelligent Material Systems and Structures, 2016, 27, 337-349.	2.5	5
27	Passive-Only Defect Detection and Imaging in Composites Using Diffuse Fields. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 67-72.	0.5	3
28	Application of damage detection methods using passive reconstruction of impulse response functions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140070.	3.4	24
29	Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	2.2	88
30	Nonlinear guided wave propagation in prestressed plates. Journal of the Acoustical Society of America, 2015, 137, 1529-1540.	1.1	46
31	Passive-only damage detection by reciprocity of Green's functions reconstructed from diffuse acoustic fields with application to wind turbine blades. Journal of Intelligent Material Systems and Structures, 2015, 26, 1251-1258.	2.5	13
32	Impact monitoring in stiffened composite aerospace panels by wave propagation. Structural Health Monitoring, 2015, 14, 547-557.	7.5	14
33	Damage location by ultrasonic Lamb waves and piezoelectric rosettes. Journal of Intelligent Material Systems and Structures, 2015, 26, 1477-1490.	2.5	20
34	Modeling of Nonlinear Guided Waves and Applications to Structural Health Monitoring. Journal of Computing in Civil Engineering, 2015, 29, .	4.7	4
35	Nonlinear Semianalytical Finite-Element Algorithm for the Analysis of Internal Resonance Conditions in Complex Waveguides. Journal of Engineering Mechanics - ASCE, 2014, 140, 502-522.	2.9	20
36	Wavelet-Aided Multivariate Outlier Analysis to Enhance Defect Contrast in Thermal Images. Experimental Techniques, 2014, 38, 28-37.	1.5	6

#	Article	IF	CITATIONS
37	Nonlinear wave propagation in constrained solids subjected to thermal loads. Journal of Sound and Vibration, 2014, 333, 541-554.	3.9	37
38	Modeling 3D heat flow interaction with defects in composite materials for infrared thermography. NDT and E International, 2014, 66, 1-7.	3.7	21
39	Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves. Journal of the Acoustical Society of America, 2014, 136, 2561-2574.	1.1	44
40	Determination of Defect Depth and Size Using Virtual Heat Sources in Pulsed Infrared Thermography. Experimental Mechanics, 2013, 53, 661-671.	2.0	20
41	A fast lock-in infrared thermography implementation to detect defects in composite structures like wind turbine blades. AIP Conference Proceedings, 2013, , .	0.4	3
42	Noncontact ultrasonic guided wave inspection of rails. Structural Health Monitoring, 2013, 12, 539-548.	7.5	52
43	Detection of defects in wind turbine composite blades using statistically enhanced Lock-In Thermography. Structural Health Monitoring, 2013, 12, 566-574.	7.5	19
44	System for in Situ Measurement of Neutral Temperature in Continuous-Welded Rail. Transportation Research Record, 2013, 2374, 154-161.	1.9	14
45	Ultrasonic Tomography for Three-Dimensional Imaging of Internal Rail Flaws. Transportation Research Record, 2013, 2374, 162-168.	1.9	Ο
46	Higher-Harmonic Generation Analysis in Complex Waveguides via a Nonlinear Semianalytical Finite Element Algorithm. Mathematical Problems in Engineering, 2012, 2012, 1-16.	1.1	13
47	Detection of Initial Yield and Onset of Failure in Bonded Posttensioned Concrete Beams. Journal of Bridge Engineering, 2012, 17, 966-974.	2.9	26
48	Toward a Computational Steering Framework for Large-Scale Composite Structures Based on Continually and Dynamically Injected Sensor Data. Procedia Computer Science, 2012, 9, 1149-1158.	2.0	15
49	Health Monitoring of Prestressing Tendons in Posttensioned Concrete Bridges. Transportation Research Record, 2011, 2220, 21-27.	1.9	23
50	Use of Interwire Ultrasonic Leakage to Quantify Loss of Prestress in Multiwire Tendons. Journal of Engineering Mechanics - ASCE, 2011, 137, 324-333.	2.9	30
51	Noncontact Ultrasonic Guided-Wave System for Rail Inspection. Transportation Research Record, 2011, 2261, 143-147.	1.9	7
52	Numerical and experimental study of guided waves for detection of defects in the rail head. NDT and E International, 2011, 44, 93-100.	3.7	55
53	Monitoring load levels in multi-wire strands by nonlinear ultrasonic waves. Structural Health Monitoring, 2011, 10, 617-629.	7.5	41
54	NONLINEAR GUIDED WAVES IN CONTINUOUSLY WELDED RAILS FOR BUCKLING PREDICTION. , 2011, , .		1

#	Article	IF	CITATIONS
55	Stress Dependence of Ultrasonic Guided Waves in Rails. Transportation Research Record, 2010, 2159, 91-97.	1.9	12
56	On the existence of longitudinal or flexural waves in rods at nonlinear higher harmonics. Journal of Sound and Vibration, 2010, 329, 1499-1506.	3.9	27
57	Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests. Advances in Civil Engineering, 2010, 2010, 1-13.	0.7	22
58	Quantitative Structural Health Monitoring by Ultrasonic Guided Waves. Journal of Engineering Mechanics - ASCE, 2010, 136, 937-944.	2.9	18
59	Higher harmonic generation in nonlinear waveguides of arbitrary cross-section. Journal of the Acoustical Society of America, 2010, 127, 2790-2796.	1.1	23
60	On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. Journal of Sound and Vibration, 2009, 323, 932-943.	3.9	105
61	Guided-wave Health Monitoring of Aircraft Composite Panels under Changing Temperature. Journal of Intelligent Material Systems and Structures, 2009, 20, 1079-1090.	2.5	58
62	Noncontact Ultrasonic Guided Wave Detection of Rail Defects. Transportation Research Record, 2009, 2117, 77-84.	1.9	13
63	A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides. Journal of Sound and Vibration, 2008, 318, 488-505.	3.9	149
64	Structural health monitoring by extraction of coherent guided waves from diffuse fields. Journal of the Acoustical Society of America, 2008, 123, EL8-EL13.	1.1	51
65	Monitoring Prestress Level in Seven Wire Prestressing Tendons by Inter Wire Ultrasonic Wave Propagation. Advances in Science and Technology, 2008, 56, 200-205.	0.2	2
66	Temperature effects in ultrasonic Lamb wave structural health monitoring systems. Journal of the Acoustical Society of America, 2008, 124, 161-174.	1.1	159
67	Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Materials and Structures, 2007, 16, 1489-1499.	3.5	129
68	The response of rectangular piezoelectric sensors to Rayleigh and Lamb ultrasonic waves. Journal of the Acoustical Society of America, 2007, 121, 175-187.	1.1	90
69	Wavelet-based outlier analysis for guided wave structural monitoring: Application to multi-wire strands. Journal of Sound and Vibration, 2007, 307, 52-68.	3.9	79
70	Feature Extraction for Defect Detection in Strands by Guided Ultrasonic Waves. Structural Health Monitoring, 2006, 5, 297-308.	7.5	47
71	Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Materials and Structures, 2006, 15, 1673-1683.	3.5	215
72	Laser–Air-Coupled Hybrid Noncontact System for Defect Detection in Rail Tracks. Transportation Research Record, 2006, 1943, 57-64.	1.9	2

#	Article	IF	CITATIONS
73	Modeling wave propagation in damped waveguides of arbitrary cross-section. Journal of Sound and Vibration, 2006, 295, 685-707.	3.9	524
74	Acoustic Emission Damage Assessment of Steel/CFRP Bonds for Rehabilitation. Journal of Composites for Construction, 2006, 10, 265-274.	3.2	22
75	Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring. Smart Structures and Systems, 2006, 2, 253-274.	1.9	24
76	Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. NDT and E International, 2005, 38, 325-334.	3.7	138
77	Ultrasonic inspection of multi-wire steel strands with the aid of the wavelet transform. Smart Materials and Structures, 2005, 14, 685-695.	3.5	55
78	High-Speed Defect Detection in Rails by Noncontact Guided Ultrasonic Testing. Transportation Research Record, 2005, 1916, 66-77.	1.9	10
79	Ultrasonic Characterization and Inspection of Open Cell Foams. Journal of Engineering Mechanics - ASCE, 2005, 131, 1200-1208.	2.9	6
80	Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures. Journal of the Acoustical Society of America, 2005, 118, 2240-2252.	1.1	94
81	Wave propagation in multi-wire strands by wavelet-based laser ultrasound. Experimental Mechanics, 2004, 44, 407-415.	2.0	76
82	Measuring high-frequency wave propagation in railroad tracks by joint time–frequency analysis. Journal of Sound and Vibration, 2004, 273, 637-651.	3.9	44
83	Propagation of ultrasonic guided waves in lap-shear adhesive joints: Case of incident a0 Lamb wave. Journal of the Acoustical Society of America, 2004, 115, 146-156.	1.1	96
84	WAVELET TRANSFORM FOR CHARACTERIZING LONGITUDINAL AND LATERAL TRANSIENT VIBRATIONS OF RAILROAD TRACKS. Research in Nondestructive Evaluation, 2004, 15, 87-98.	1.1	15
85	Wave Propagation in Multi-Wire Strands by Wavelet-Based Laser Ultrasound. Experimental Mechanics, 2004, 44, 407-415.	2.0	4
86	EFFECT OF FREQUENCY ON THE ACOUSTOELASTIC RESPONSE OF STEEL BARS. Experimental Techniques, 2003, 27, 40-43.	1.5	28
87	Stress Measurement and Defect Detection in Steel Strands by Guided Stress Waves. Journal of Materials in Civil Engineering, 2003, 15, 219-227.	2.9	136
88	Ultrasonic Guided Wave Inspection of Bonded Lap Joints: Noncontact Method and Photoelastic Visualization. Research in Nondestructive Evaluation, 2001, 13, 153-171.	1.1	28
89	Acoustic emission monitoring of carbon-fiber-reinforced-polymer bridge stay cables in large-scale testing. Experimental Mechanics, 2001, 41, 282-290.	2.0	66
90	Noncontact Air-Coupled Guided Wave Ultrasonics for Detection of Thinning Defects in Aluminum Plates. Research in Nondestructive Evaluation, 2001, 13, 61-77.	1.1	51

#	Article	IF	CITATIONS
91	Noncontact Air-Coupled Guided Wave Ultrasonics for Detection of Thinning Defects in Aluminum Plates. Research in Nondestructive Evaluation, 2001, 13, 61-77.	1.1	5
92	ADVANCES IN NON-CONTACT ULTRASONIC INSPECTION OF RAILROAD TRACKS. Experimental Techniques, 2000, 24, 23-26.	1.5	20
93	Health monitoring of UCSD's I-5/Gilman advanced technology bridge. Smart Materials Bulletin, 2000, 2000, 6-10.	0.0	4
94	A Hybrid Non-Contact Ultrasonic System for Sensing Bond Quality in Tow-Placed Thermoplastic Composites. Journal of Composite Materials, 2000, 34, 1860-1880.	2.4	14
95	On the Effect of Interference Fits in Composite Pin-Joints. Journal of Thermoplastic Composite Materials, 1999, 12, 23-32.	4.2	11
96	On the Elastic Behavior of a Cross-Ply Composite Pin-Joint with Clearance Fits. Journal of Thermoplastic Composite Materials, 1999, 12, 13-22.	4.2	28
97	Experimental observation of the intrusive effect of a contact transducer on ultrasound propagation. Ultrasonics, 1999, 37, 179-183.	3.9	9
98	High-sensitivity laser-based ultrasonic C-scan system for materials inspection. Experimental Mechanics, 1999, 39, 329-334.	2.0	17
99	COMPENSATION OF THERMAL OUTPUT OF STRAIN GAGES ON ORTHOTROPIC MATERIALS: CASE OF ONE COMPENSATING GAGE FOR MULTIPLE ACTIVE ONES. Experimental Techniques, 1998, 22, 30-33.	1.5	8
100	STRAIN IN ISOTROPIC PIN-JOINTS: EXPERIMENTAL AND NUMERICAL ANALYSIS. Experimental Techniques, 1998, 22, 25-27.	1.5	1
101	Whole-field strain measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method. Experimental Mechanics, 1998, 38, 55-60.	2.0	34
102	A Study on the Effects of Clearance and Interference Fits in a Pin-Loaded Cross-Ply FGRP Laminate. Journal of Composite Materials, 1998, 32, 783-802.	2.4	31