Jolanta Kowalonek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7233609/publications.pdf

Version: 2024-02-01

471371 434063 1,025 45 17 31 citations h-index g-index papers 45 45 45 1410 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Design of Sodium Alginate/Gelatin-Based Emulsion Film Fused with Polylactide Microparticles Charged with Plant Extract. Materials, 2021, 14, 745.	1.3	13
2	Lyophilized Emulsions in the Form of 3D Porous Matrices as a Novel Material for Topical Application. Materials, 2021, 14, 950.	1.3	6
3	Corona Charging of Isotactic-Polypropylene Composites. Polymers, 2021, 13, 942.	2.0	2
4	Freeze-Dried Matrices Composed of Degradable Polymers with Surfactant-Loaded Microparticles Based on Pectin and Sodium Alginate. Materials, 2021, 14, 3044.	1.3	8
5	Bionanocellulose/Poly(Vinyl Alcohol) Composites Produced by In-Situ Method and Ex-Situ/Impregnation or Sterilization Methods. Materials, 2021, 14, 6340.	1.3	4
6	Effect of plasticizer and surfactant on the properties of poly(vinyl alcohol)/chitosan films. International Journal of Biological Macromolecules, 2020, 164, 2100-2107.	3.6	30
7	Physico-Chemical and Light-Induced Properties of Quinoline Azo-dyes Polymers. International Journal of Molecular Sciences, 2020, 21, 5755.	1.8	20
8	Surface Studies of UV Irradiated Polypropylene Films Modified with Mineral Fillers Designed as Piezoelectric Materials. Polymers, 2020, 12, 562.	2.0	9
9	Influence of glass beads filler and orientation process on piezoelectric properties of polyethylene composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 21032-21047.	1.1	10
10	Microparticles based on natural and synthetic polymers for cosmetic applications. International Journal of Biological Macromolecules, 2019, 129, 952-956.	3.6	47
11	Modyfikacja wÅ,aÅ›ciwoÅ›ci powierzchniowych kompozytów polietylenowych przeznaczonych na materiaÅ,y piezoelektryczne. WpÅ,yw promieniowania UV, orientacji i wyÅ,adowaÅ" koronowych. Przemysl Chemiczny, 2019, 1, 98-104.	0.0	0
12	The chitosan – Porphyrazine hybrid materials and their photochemical properties. Journal of Photochemistry and Photobiology B: Biology, 2018, 181, 1-13.	1.7	18
13	Photochemical Reactions in Dialdehyde Starch. Molecules, 2018, 23, 3358.	1.7	24
14	Collagen/Gelatin/Hydroxyethyl Cellulose Composites Containing Microspheres Based on Collagen and Gelatin: Design and Evaluation. Polymers, 2018, 10, 456.	2.0	37
15	New piezoelectric composites based on isotactic polypropylene filled with silicate. Journal of Materials Science: Materials in Electronics, 2017, 28, 6435-6447.	1.1	18
16	Studies of chitosan/pectin complexes exposed to UV radiation. International Journal of Biological Macromolecules, 2017, 103, 515-524.	3.6	39
17	Surface and thermal properties of UV-irradiated chitosan/poly(ethylene oxide) blends. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 209-218.	2.0	11
18	Surface and thermal behavior of chitosan/poly(ethylene oxide) blends. Molecular Crystals and Liquid Crystals, 2016, 640, 78-89.	0.4	9

#	Article	IF	Citations
19	Surface properties of poly(lactic acid)/polyacrylate semi-interpenetrating networks – Effect of UVC radiation. Polymer Degradation and Stability, 2016, 131, 71-81.	2.7	6
20	Surface studies of UV-irradiated poly(vinyl chloride)/poly(methyl methacrylate) blends. Polymer Degradation and Stability, 2016, 133, 367-377.	2.7	15
21	Effect of UV-irradiation on fluorescence of poly(methyl methacrylate) films with photosensitive organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 319-320, 18-24.	2.0	9
22	The influence of UV-irradiation on chitosan modified by the tannic acid addition. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 333-339.	1.7	50
23	Studies of plasma treated styrene-based ionomers. Polimery, 2015, 60, 232-241.	0.4	0
24	Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1387-1394.	2.0	81
25	The Influence of UV-Irradiation or Plasma on Ionomer Surfaces. Molecular Crystals and Liquid Crystals, 2014, 590, 11-16.	0.4	0
26	Effect of azobenzene derivatives on the photochemical stability of poly(methyl methacrylate) films. Polymer Degradation and Stability, 2012, 97, 1305-1313.	2.7	6
27	Influence of a photoinitiator on the photochemical stability of poly(methyl methacrylate) studied with fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 2010, 115, 1598-1607.	1.3	16
28	Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends. Applied Surface Science, 2010, 257, 325-331.	3.1	44
29	Studies of pectin/polyvinylpyrrolidone blends exposed to ultraviolet radiation. European Polymer Journal, 2010, 46, 345-353.	2.6	44
30	Surface Properties of Poly(vinyl alcohol) with Iron(III)chloride Before and After UVâ€Irradiation. Macromolecular Symposia, 2010, 295, 114-118.	0.4	2
31	Surface properties of ionomers based on styrene-b-acrylic acid copolymers obtained by copolymerization in emulsion. Applied Surface Science, 2009, 255, 9159-9165.	3.1	5
32	Photochemical stability of poly(vinyl pyrrolidone) in the presence of collagen. Polymer Degradation and Stability, 2008, 93, 2127-2132.	2.7	11
33	The surface properties of ionomers based on styrene-co-acrylic acid copolymers. Surface Science, 2006, 600, 1134-1139.	0.8	10
34	Changes of surface morphology in UV-irradiated poly(acrylic acid)/poly(ethylene oxide) blends. Surface Science, 2004, 566-568, 560-565.	0.8	17
35	Surface characteristics of UV-irradiated collagen/PVP blended films. Surface Science, 2004, 566-568, 608-612.	0.8	37
36	Studies of photooxidative degradation of poly(vinyl chloride)/poly(ethylene oxide) blends. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 585-602.	2.4	23

#	Article	IF	Citations
37	The influence of UV-irradiation on poly(vinyl chloride) modified by iron and cobalt chlorides. Polymer Degradation and Stability, 2003, 79, 231-240.	2.7	43
38	Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surface Science, 2002, 507-510, 883-888.	0.8	97
39	The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action. European Polymer Journal, 2002, 38, 1915-1919.	2.6	129
40	The influence of transition metal salts on photo-oxidative degradation of poly(ethylene oxide). Polymer Degradation and Stability, 2001, 73, 437-441.	2.7	26
41	Accelerated Degradation of Polymers. Molecular Crystals and Liquid Crystals, 2000, 354, 421-425.	0.3	1
42	Studies on degradation of poly(ethylene oxide) by multistep pyrolysis/gas chromatography with a programmable temperature vaporization injector. Polimery, 2000, 45, 433-438.	0.4	5
43	Cobalt(II) chloride catalysed oxidative degradation of poly(ethylene oxide) by a short wavelength UV-radiation. Polymer, 1999, 40, 5781-5791.	1.8	25
44	Changes of poly(ethylene oxide) photostability by doping with nickel(II) chloride. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 128, 121-127.	2.0	16
45	Influence of methyl group in a quinoline moiety on optical and light-induced properties of side-chain azo-polymers. Applied Nanoscience (Switzerland), 0, , 1.	1.6	2