
Kim A Neve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7233354/publications.pdf Version: 2024-02-01

KIM & NEVE

			CITATIONS
1	Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs. Life Sciences, 2022, 294, 120383.	2.0	1
2	A Gainâ€ofâ€Function Variant in Dopamine <scp>D2</scp> Receptor and Progressive Chorea and Dystonia Phenotype. Movement Disorders, 2021, 36, 729-739.	2.2	20
3	Commentary on "Novel Interaction of the Dopamine D2 Receptor and the Ca ²⁺ Binding Protein S100B: Role in D2 Receptor Function― Molecular Pharmacology, 2021, 100, 91-94.	1.0	3
4	Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant. ACS Chemical Neuroscience, 2021, 12, 1873-1884.	1.7	9
5	Reply to: "Childhood Onset Chorea Caused by a Recurrent De Novo <scp>DRD2</scp> Variantâ€ Movement Disorders, 2021, 36, 1473-1474.	2.2	2
6	Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Molecular Psychiatry, 2020, 25, 2086-2100.	4.1	55
7	Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1. ELife, 2019, 8, .	2.8	27
8	Correlated Gene Expression and Anatomical Communication Support Synchronized Brain Activity in the Mouse Functional Connectome. Journal of Neuroscience, 2018, 38, 5774-5787.	1.7	23
9	Desensitized D2 autoreceptors are resistant to trafficking. Scientific Reports, 2017, 7, 4379.	1.6	42
10	Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors. ELife, 2017, 6, .	2.8	9
11	Effects of D1 receptor knockout on fear and reward learning. Neurobiology of Learning and Memory, 2016, 133, 265-273.	1.0	16
12	Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors. Neuropsychopharmacology, 2016, 41, 2072-2081.	2.8	55
13	Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function. PLoS ONE, 2016, 11, e0152581.	1.1	42
14	Role for Rab10 in Methamphetamine-Induced Behavior. PLoS ONE, 2015, 10, e0136167.	1.1	12
15	Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium. ELife, 2015, 4, .	2.8	36
16	Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA. Cell Reports, 2015, 12, 944-954.	2.9	31
17	Mutation of Three Residues in the Third Intracellular Loop of the Dopamine D2 Receptor Creates an Internalization-defective Receptor. Journal of Biological Chemistry, 2014, 289, 33663-33675.	1.6	32
18	Characterization of [³ H] <scp>LS</scp> â€3â€134, a novel arylamide phenylpiperazine D3 dopamine receptor selective radioligand. Journal of Neurochemistry, 2014, 131, 418-431.	2.1	17

ΚιΜ Α Νενε

#	Article	IF	CITATIONS
19	Dopamine and extinction: A convergence of theory with fear and reward circuitry. Neurobiology of Learning and Memory, 2014, 108, 65-77.	1.0	181
20	Amino acids within intracellular loop 3 of the D2 dopamine receptor are necessary for arrestin binding and receptor internalization. FASEB Journal, 2013, 27, 1172.7.	0.2	0
21	Dopamine Receptor Signaling: Intracellular Pathways to Behavior. , 2010, , 137-173.		14
22	Lipid rafts and membrane cholesterol are involved in regulating D2 dopamine receptor signaling. FASEB Journal, 2010, 24, 584.1.	0.2	0
23	An Intracellular Loop 2 Amino Acid Residue Determines Differential Binding of Arrestin to the Dopamine D ₂ and D ₃ Receptors. Molecular Pharmacology, 2009, 75, 19-26.	1.0	30
24	A Dopamine D ₂ Receptor Mutant Capable of G Protein-Mediated Signaling but Deficient in Arrestin Binding. Molecular Pharmacology, 2009, 75, 113-123.	1.0	47
25	In Vivo Evidence for and Consequences of Functional Selectivity. , 2009, , 87-104.		0
26	Identification of binding determinants for arrestin on D2 dopamine receptor intracellular loops. FASEB Journal, 2009, 23, 944.4.	0.2	0
27	Novel Interaction of the Dopamine D ₂ Receptor and the Ca ²⁺ Binding Protein S100B: Role in D ₂ Receptor Function. Molecular Pharmacology, 2008, 74, 371-378.	1.0	51
28	Interactions of the Dopamine D2 Receptor with the Calciumâ€Binding Protein S100B. FASEB Journal, 2008, 22, 726.2.	0.2	0
29	Localization of the Dopamine D2 Receptor in Lipid Raft Microdomains: Implications for Receptor Function. FASEB Journal, 2008, 22, 727.11.	0.2	0
30	Evidence That Calmodulin Binding to the Dopamine D2Receptor Enhances Receptor Signaling. Journal of Receptor and Signal Transduction Research, 2007, 27, 47-65.	1.3	27
31	Dopamine Receptors. , 2007, , 1-4.		1
32	D5 Dopamine Receptor. , 2007, , 1-9.		0
33	D1-like Dopamine Receptors. , 2007, , 1-4.		0
34	D2-like Dopamine Receptors. , 2007, , 1-4.		0
35	D4 Dopamine Receptor. , 2007, , 1-12.		0

3

Κιм Α Νενε

#	Article	IF	CITATIONS
37	D1 Dopamine Receptor. , 2007, , 1-13.		0
38	D2 Dopamine Receptor. , 2007, , 1-13.		0
39	Identification of a Zn2+-binding site on the dopamine D2 receptor. Biochemical and Biophysical Research Communications, 2006, 339, 873-879.	1.0	26
40	Structural Determinants of Pharmacological Specificity Between D1 and D2 Dopamine Receptors. Molecular Pharmacology, 2006, 69, 185-194.	1.0	31
41	Novel Features of G Protein-Coupled Receptor Kinase 4: Fig. 1 Molecular Pharmacology, 2006, 69, 673-676.	1.0	7
42	Dopamine D1 receptor interaction with arrestin3 in neostriatal neurons. Journal of Neurochemistry, 2005, 93, 128-134.	2.1	44
43	Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. Journal of Neurochemistry, 2005, 93, 899-909.	2.1	63
44	Sensitization of adenylate cyclase by GÎ \pm i/o-coupled receptors. , 2005, 106, 405-421.		114
45	Use of herpes virus amplicon vectors to study brain disorders. BioTechniques, 2005, 39, 381-391.	0.8	133
46	Double Feature at the Signalplex: Fig. 1 Molecular Pharmacology, 2005, 68, 275-278.	1.0	15
47	Dopamine Receptors. , 2005, , 3-43.		0
48	Preferential Interaction between the Dopamine D2 Receptor and Arrestin2 in Neostriatal Neurons. Molecular Pharmacology, 2004, 66, 1635-1642.	1.0	65
49	Dopamine Receptors. , 2004, , 817-822.		3
50	Dopamine Receptor Signaling. Journal of Receptor and Signal Transduction Research, 2004, 24, 165-205.	1.3	694
51	Dopamine Receptor Signaling. Journal of Receptor and Signal Transduction Research, 2004, 24, 165-205.	1.3	6
52	Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization. Journal of Biological Chemistry, 2003, 278, 46741-46749.	1.6	401
53	Structural Analysis of the Mammalian D2, D3 and D4 Dopamine Receptors. , 2003, , 71-128.		4
54	DNA Synthesis and Neuronal Apoptosis Caused by Familial Alzheimer Disease Mutants of the Amyloid Precursor Protein Are Mediated by the p21 Activated Kinase PAK3. Journal of Neuroscience, 2003, 23, 6914-6927.	1.7	114

Κιм Α Νενε

#	Article	IF	CITATIONS
55	Regulation of Dopamine D1Receptor Trafficking by Protein Kinase A-Dependent Phosphorylation. Molecular Pharmacology, 2002, 61, 806-816.	1.0	49
56	Dopamine D2 Receptor-Induced Heterologous Sensitization of Adenylyl Cyclase Requires Gαs: Characterization of Gαs-Insensitive Mutants of Adenylyl Cyclase V. Molecular Pharmacology, 2001, 60, 1168-1172.	1.0	22
57	Modeling and Mutational Analysis of a Putative Sodium-Binding Pocket on the Dopamine D ₂ Receptor. Molecular Pharmacology, 2001, 60, 373-381.	1.0	78
58	Regulation of Melatonin 1a Receptor Signaling and Trafficking by Asparagine-124. Molecular Endocrinology, 2001, 15, 1306-1317.	3.7	12
59	Viral-Mediated Gene Delivery Of Constitutively Activated GAlphaS Alters Vasoreactivity. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 9-13.	0.9	12
60	CoMFA-Based Prediction of Agonist Affinities at Recombinant Wild Type versus Serine to Alanine Point Mutated D2 Dopamine Receptorsâ€. Journal of Medicinal Chemistry, 2000, 43, 3005-3019.	2.9	50
61	Short- and long-term heterologous sensitization of adenylate cyclase by D 4 dopamine receptors. Psychopharmacology, 1999, 141, 83-92.	1.5	40
62	[3H]substrate- and cell-specific effects of uptake inhibitors on human dopamine and serotonin transporter-mediated efflux. Synapse, 1998, 30, 97-106.	0.6	38
63	CoMFA-Based Prediction of Agonist Affinities at Recombinant D1 vs D2 Dopamine Receptors. Journal of Medicinal Chemistry, 1998, 41, 4385-4399.	2.9	40
64	Uptake and Release of Neurotransmitters. Current Protocols in Neuroscience, 1998, 2, Unit7.9.	2.6	12
65	Modulation of Rat Rotational Behavior by Direct Gene Transfer of Constitutively Active Protein Kinase C into Nigrostriatal Neurons. Journal of Neuroscience, 1998, 18, 4119-4132.	1.7	43
66	Contribution of Serine Residues to Constitutive and Agonist-Induced Signaling via the D _{2S} Dopamine Receptor: Evidence for Multiple, Agonist-Specific Active Conformations. Molecular Pharmacology, 1998, 54, 435-444.	1.0	84
67	Selective Activation of Gαoby D2LDopamine Receptors in NS20Y Neuroblastoma Cells. Journal of Neuroscience, 1998, 18, 8692-8699.	1.7	60
68	D2 Dopamine Receptors Stimulate Mitogenesis Through Pertussis Toxinâ€Sensitive G Proteins and Rasâ€Involved ERK and SAP/JNK Pathways in Rat C6â€D2L Glioma Cells. Journal of Neurochemistry, 1998, 71, 980-990.	2.1	97
69	[3H]substrate―and cellâ€specific effects of uptake inhibitors on human dopamine and serotonin transporterâ€mediated efflux. Synapse, 1998, 30, 97-106.	0.6	1
70	Molecular Biology of Dopamine Receptors. , 1997, , 27-76.		58
71	Constitutive Activity of a Chimeric D ₂ /D ₁ Dopamine Receptor. Molecular Pharmacology, 1997, 52, 1137-1149.	1.0	58
72	Activation of Type II Adenylate Cyclase by D2and D4but Not D3Dopamine Receptors. Molecular Pharmacology, 1997, 52, 181-186.	1.0	54

Κιμ Α Νένε

#	Article	IF	CITATIONS
73	Metabolism of Catecholamines by Catechol-O -Methyltransferase in Cells Expressing Recombinant Catecholamine Transporters. Journal of Neurochemistry, 1997, 69, 1459-1466.	2.1	41
74	Regulation of Dopamine Receptor Function and Expression. , 1997, , 383-424.		24
75	Overview of Neural Gene Expression. Current Protocols in Neuroscience, 1997, 00, Unit 4.5.	2.6	1
76	Comparative Molecular Field Analysis-Based Prediction of Drug Affinities at Recombinant D1A Dopamine Receptorsâ€. Journal of Medicinal Chemistry, 1996, 39, 850-859.	2.9	30
77	[12] Regulation of Na+-H+ exchange by G protein-coupled receptors. Methods in Neurosciences, 1995, 25, 225-241.	0.5	4
78	[9] Receptor expression in mammalian cells. Methods in Neurosciences, 1995, 25, 163-174.	0.5	6
79	Regulation and functional characterization of a rat recombinant dopamine D3 receptor. Synapse, 1995, 21, 1-9.	0.6	41
80	Drugâ€Induced Upâ€Regulation of Dopamine D2 Receptors on Cultured Cells. Journal of Neurochemistry, 1995, 65, 569-577.	2.1	31
81	Antisense GAP-43 Inhibits the Evoked Release of Dopamine from PC12 Cells. Journal of Neurochemistry, 1993, 60, 626-633.	2.1	70
82	The Use of Antisense Intervention to Decipher the Role of the Neuronal Growth-Associated Protein GAP-43. Methods, 1993, 2, 39-49.	0.5	2
83	Contributions of Conserved Serine Residues to the Interactions of Ligands with Dopamine D2 Receptors. Journal of Neurochemistry, 1992, 59, 627-635.	2.1	128
84	Serum haloperidol and anticholinergic levels in drug-induced parkinsonism. Biological Psychiatry, 1989, 25, A165.	0.7	0
85	Cloning of a Rat D2-Dopamine Receptor cDNA. , 1989, , 259-267.		0
86	Cloning and expression of a rat D2 dopamine receptor cDNA. Nature, 1988, 336, 783-787.	13.7	1,121
87	Monoclonal Antibodies with High Affinity for Spiroperidol. Journal of Neurochemistry, 1988, 50, 1253-1262.	2.1	6
88	Development and characterization of anti-spiroperidol antibodies. Biochemical Pharmacology, 1988, 37, 3204-3206.	2.0	0
89	Effects of chronic administration of agonists and antagonists on the density of beta-adrenergic receptors. American Journal of Cardiology, 1986, 57, F17-F22.	0.7	23
90	Denervation accelerates the reappearance of neostriatal D-2 receptors after irreversible receptor blockade. Brain Research, 1985, 329, 225-231.	1.1	42

Κιм Α Νενε

#	Article	IF	CITATIONS
91	Computer-assisted video analysis of [3H]spiroperidol binding autoradiographs. Journal of Neuroscience Methods, 1984, 10, 173-188.	1.3	90
92	The effects of denervation and chronic haloperidol treatment on neostriatal dopamine receptor density are not additive in the rat. Neuroscience Letters, 1984, 46, 77-83.	1.0	19
93	Quantitative analysis of [3H]spiroperidol binding to rat forebrain sections: Plasticity of neostriatal dopamine receptors after nigrostriatal injury. Brain Research, 1984, 302, 9-18.	1.1	94
94	The crossed mesostriatal projection: neurochemistry and developmental response to lesion. Brain Research, 1983, 279, 1-8.	1.1	55
95	Chronic lithium administration alters behavioral recovery from nigrostriatal injury: Effects on neostriatal [3H]spiroperidol binding sites. Brain Research, 1983, 267, 301-311.	1.1	37
96	Recovery of function after mesotelencephalic dopaminergic injury in senescence. Brain Research, 1983, 259, 249-260.	1.1	41
97	Plasticity of neostriatal dopamine receptors after nigrostriatal injury: Relationship to recovery of sensorimotor functions and behavioral supersensitivity. Brain Research, 1982, 244, 33-44	1.1	143