Pramod P Wangikar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7232895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology, 2015, 184, 363-372.	4.8	224
2	Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnology and Bioengineering, 2001, 72, 562-567.	1.7	184
3	Cyanobacteria: Promising biocatalysts for sustainable chemical production. Journal of Biological Chemistry, 2018, 293, 5044-5052.	1.6	184
4	Lipase-Catalyzed Esterification. Catalysis Reviews - Science and Engineering, 2000, 42, 439-480.	5.7	147
5	Functional Sites in Protein Families Uncovered via an Objective and Automated Graph Theoretic Approach. Journal of Molecular Biology, 2003, 326, 955-978.	2.0	105
6	Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Scientific Reports, 2018, 8, 16632.	1.6	91
7	Metabolic model of Synechococcus sp. PCC 7002: Prediction of flux distribution and network modification for enhanced biofuel production. Bioresource Technology, 2016, 213, 190-197.	4.8	80
8	Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research, 2018, 30, 28-37.	2.4	71
9	Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically nonâ€stationary ¹³ C metabolic flux analysis. Biotechnology and Bioengineering, 2017, 114, 2298-2308.	1.7	66
10	Recent advances in synthetic biology of cyanobacteria. Applied Microbiology and Biotechnology, 2018, 102, 5457-5471.	1.7	66
11	A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801. Scientific Reports, 2020, 10, 191.	1.6	54
12	Association of <scp>N</scp> â€acetyltransferase 2 and cytochrome <scp>P</scp> 450 2 <scp>E</scp> 1 gene polymorphisms with antituberculosis drugâ€induced hepatotoxicity in <scp>W</scp> estern <scp>I</scp> ndia. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 1368-1374.	1.4	51
13	Challenges and opportunities for microalgaeâ€mediated CO ₂ capture and biorefinery. Biotechnology and Bioengineering, 2015, 112, 1281-1296.	1.7	51
14	Studies on toxicity of antitubercular drugs namely isoniazid, rifampicin, and pyrazinamide in an in vitro model of HepG2 cell line. Medicinal Chemistry Research, 2011, 20, 1611-1615.	1.1	50
15	Optimization of high cell density fermentation process for recombinant nitrilase production in E. coli. Bioresource Technology, 2015, 188, 202-208.	4.8	42
16	Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions. Photosynthesis Research, 2013, 118, 191-198.	1.6	41
17	Photosynthetic Co-production of Succinate and Ethylene in a Fast-Growing Cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites, 2020, 10, 250.	1.3	35
18	Real time phase detection based online monitoring of batch fermentation processes. Process Biochemistry, 2009, 44, 799-811.	1.8	33

PRAMOD P WANGIKAR

#	Article	lF	CITATIONS
19	Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga. Journal of Applied Phycology, 2016, 28, 2631-2640.	1.5	33
20	Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation. Biotechnology and Bioengineering, 2006, 93, 779-790.	1.7	32
21	Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: A case study with rifamycin B fermentation. Journal of Biotechnology, 2007, 132, 156-166.	1.9	31
22	SWATH Tandem Mass Spectrometry Workflow for Quantification of Mass Isotopologue Distribution of Intracellular Metabolites and Fragments Labeled with Isotopic ¹³ C Carbon. Analytical Chemistry, 2018, 90, 6486-6493.	3.2	31
23	An improved method for extraction of polar and charged metabolites from cyanobacteria. PLoS ONE, 2018, 13, e0204273.	1.1	31
24	Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid. Biotechnology for Biofuels, 2020, 13, 89.	6.2	31
25	Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. Annals of Hepatology, 2013, 12, 959-965.	0.6	27
26	A global analysis of adaptive evolution of operons in cyanobacteria. Antonie Van Leeuwenhoek, 2013, 103, 331-346.	0.7	26
27	Fine-Tuning Native Promoters of <i>Synechococcus elongatus</i> PCC 7942 To Develop a Synthetic Toolbox for Heterologous Protein Expression. ACS Synthetic Biology, 2019, 8, 1219-1223.	1.9	26
28	Cyanobacteria as cell factories: the roles of host and pathway engineering and translational research. Current Opinion in Biotechnology, 2022, 73, 314-322.	3.3	26
29	The effect of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. Journal of Biotechnology, 2019, 289, 1-6.	1.9	25
30	The role of systems biology in developing non-model cyanobacteria as hosts for chemical production. Current Opinion in Biotechnology, 2020, 64, 62-69.	3.3	25
31	Model based optimization of high cell density cultivation of nitrogen-fixing cyanobacteria. Bioresource Technology, 2013, 148, 228-233.	4.8	23
32	A Library of Tunable, Portable, and Inducer-Free Promoters Derived from Cyanobacteria. ACS Synthetic Biology, 2020, 9, 1790-1801.	1.9	23
33	Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes. Bioresource Technology, 2011, 102, 6951-6958.	4.8	22
34	Rhythm of carbon and nitrogen fixation in unicellular cyanobacteria under turbulent and highly aerobic conditions. Biotechnology and Bioengineering, 2013, 110, 2371-2379.	1.7	22
35	Development of biotransformation process for asymmetric reduction with novel anti-Prelog NADH-dependent alcohol dehydrogenases. Process Biochemistry, 2018, 70, 71-78.	1.8	22
36	Elevated carbon dioxide levels lead to proteome-wide alterations for optimal growth of a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. Scientific Reports, 2019, 9, 6257.	1.6	21

#	Article	IF	CITATIONS
37	Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant. Photosynthesis Research, 2013, 118, 155-165.	1.6	19
38	Effect of elevated carbon dioxide and nitric oxide on the physiological responses of two green algae, Asterarcys quadricellulare and Chlorella sorokiniana. Journal of Applied Phycology, 2020, 32, 189-204.	1.5	18
39	Dynamic Inventory of Intermediate Metabolites of Cyanobacteria in a Diurnal Cycle. IScience, 2020, 23, 101704.	1.9	18
40	Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterranei S699, a case study. Microbial Cell Factories, 2006, 5, 32.	1.9	16
41	Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance. Journal of Bioscience and Bioengineering, 2021, 131, 491-500.	1.1	15
42	Sequential utilization of substrates by Pseudomonas putida CSV86: Signatures of intermediate metabolites and online measurements. Microbiological Research, 2009, 164, 429-437.	2.5	14
43	Correlation between pellet morphology and glycopeptide antibiotic balhimycin production by Amycolatopsis balhimycina DSM 5908. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 27-35.	1.4	14
44	Rhythmic and sustained oscillations in metabolism and gene expression of Cyanothece sp. ATCC 51142 under constant light. Frontiers in Microbiology, 2013, 4, 374.	1.5	14
45	Association of genetic variants with anti-tuberculosis drug induced hepatotoxicity: A high resolution melting analysis. Infection, Genetics and Evolution, 2014, 23, 42-48.	1.0	14
46	A cybernetic model to predict the effect of freely available nitrogen substrate on rifamycin B production in complex media. Applied Microbiology and Biotechnology, 2006, 72, 662-670.	1.7	13
47	Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. Bioresource Technology, 2012, 114, 484-491.	4.8	13
48	Diurnal rhythm of a unicellular diazotrophic cyanobacterium under mixotrophic conditions and elevated carbon dioxide. Photosynthesis Research, 2013, 118, 51-57.	1.6	13
49	Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online. Journal of Biotechnology, 2006, 127, 115-128.	1.9	12
50	Gene essentiality, conservation index and co-evolution of genes in cyanobacteria. PLoS ONE, 2017, 12, e0178565.	1.1	11
51	Drug discovery against H1N1 virus (influenza A virus) via computational virtual screening approach. Medicinal Chemistry Research, 2011, 20, 1445-1449.	1.1	10
52	High cell density cultivation of E. coli in shake flasks for the production of recombinant proteins. Biotechnology Reports (Amsterdam, Netherlands), 2022, 33, e00694.	2.1	10
53	Combined effects of carbon, nitrogen and phosphorus substrates on Dâ€ribose production via transketolase deficient strain of <i>Bacillus pumilus</i> . Journal of Chemical Technology and Biotechnology, 2008, 83, 1110-1119.	1.6	9
54	Mass Isotopologue Distribution of dimer ion adducts of intracellular metabolites for potential applications in 13C Metabolic Flux Analysis. PLoS ONE, 2019, 14, e0220412.	1.1	9

PRAMOD P WANGIKAR

#	Article	IF	CITATIONS
55	Characterization and Application of a Robust Glucose Dehydrogenase from Paenibacillus pini for Cofactor Regeneration in Biocatalysis. Indian Journal of Microbiology, 2020, 60, 87-95.	1.5	9
56	Megacell phenotype and its relation to metabolic alterations in transketolase deficient strain of <i>Bacillus pumilus</i> . Biotechnology and Bioengineering, 2009, 102, 1387-1397.	1.7	8
57	Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium. PLoS ONE, 2015, 10, e0125148.	1.1	7
58	SHARP: genome-scale identification of gene–protein–reaction associations in cyanobacteria. Photosynthesis Research, 2013, 118, 181-190.	1.6	6
59	Evaluation of freely available software tools for untargeted quantification of 13C isotopic enrichment in cellular metabolome from HR-LC/MS data. Metabolic Engineering Communications, 2020, 10, e00120.	1.9	6
60	Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey. Biotechnology Advances, 2022, 54, 107816.	6.0	6
61	Probing the metabolism of γâ€glutamyl peptides in cyanobacteria via metabolite profiling and ¹³ C labeling. Plant Journal, 2022, 109, 708-726.	2.8	6
62	Influence of mixotrophic growth on rhythmic oscillations in expression of metabolic pathways in diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Bioresource Technology, 2015, 188, 145-152.	4.8	5
63	Rhythmic oscillations in KaiC1 phosphorylation and ATP/ADP ratio in nitrogen-fixing cyanobacterium <i>Cyanothece</i> sp. ATCC 51142. Biological Rhythm Research, 2016, 47, 285-301.	0.4	5
64	Local and Global Algorithms for Learning Dynamic Bayesian Networks. , 2012, , .		4
65	Liquid Chromatography Methods for Separation of Polar and Charged Intracellular Metabolites for 13C Metabolic Flux Analysis. Methods in Molecular Biology, 2020, 2088, 33-50.	0.4	4
66	SWATH: A Data-Independent Tandem Mass Spectrometry Method to Quantify 13C Enrichment in Cellular Metabolites and Fragments. Methods in Molecular Biology, 2020, 2088, 189-204.	0.4	4
67	Dynamics of rate limiting enzymes involved in the sequential substrate uptake by Pseudomonas putida CSV86: Modeling and experimental validation. Process Biochemistry, 2011, 46, 701-708.	1.8	3
68	A model of the circadian clock in the cyanobacterium Cyanothece sp. ATCC 51142. BMC Bioinformatics, 2013, 14, S14.	1.2	3
69	Expanding the repertoire of nitrilases with broad substrate specificity and high substrate tolerance for biocatalytic applications. Process Biochemistry, 2020, 94, 289-296.	1.8	3
70	CFD analysis of the flow dynamics of microorganisms in dilute cultures in stirred tank photobioreactors. Bioresource Technology Reports, 2018, 3, 238-246.	1.5	2
71	A method to compute instantaneous oxygen evolution rates in cyanobacterial cultures grown in shake flasks. Engineering Reports, 2020, 2, e12094.	0.9	2
72	Role of extracellular protease in nitrogen substrate management during antibiotic fermentation: a process model and experimental validation. Applied Microbiology and Biotechnology, 2011, 91, 1019-1028.	1.7	1

#	Article	IF	CITATIONS
73	Editorial: Bioconversion and Biorefinery of C1 Compounds. Frontiers in Microbiology, 2021, 12, 778962.	1.5	1
74	Metabolic engineering of cyanobacteria for production of platform chemicals: A synthetic biology approach. , 2020, , 127-145.		1
75	Protein Structure Classification Using Geometric Invariants and Dynamic Programming. Protein and Peptide Letters, 2007, 14, 658-664.	0.4	0
76	Microfluidic device optimization for cell growth. , 2013, , .		0
77	Cyanobacteria as a renewable resource for biofuel production. , 2022, , 475-499.		0